原子层沉积
石英晶体微天平
吸附
纳米颗粒
透射电子显微镜
化学
钯
化学工程
单层
薄膜
分析化学(期刊)
材料科学
纳米技术
物理化学
催化作用
有机化学
工程类
作者
Junling Lu,Bin Liu,Jeffrey Greeley,Zhenxing Feng,Joseph A. Libera,Lei Yu,Michael J. Bedzyk,Peter C. Stair,Jeffrey W. Elam
摘要
Atomic layer deposition (ALD) of Al2O3 using trimethylaluminum (TMA) and water on Pd nanoparticles (NPs) was studied by combining in situ quartz crystal microbalance (QCM) measurements, in situ quadrupole mass spectrometry (QMS), and transmission electron microscopy (TEM) with density functional theory (DFT) calculations. TEM images of the ALD Al2O3 overcoated Pd showed conformal Al2O3 films on the Pd NPs as expected for ALD. However, hydrogen detected by in situ QMS during the water pulses suggested that the ALD Al2O3 films on the Pd NPs were porous rather than being continuous coatings. Additional in situ QCM and QMS measurements indicated that Al2O3 ALD on Pd NPs proceeds by a self-poisoning, self-cleaning process. To evaluate this possibility, DFT calculations were performed on Pd(111) and Pd(211) as idealized Pd NP surfaces. These calculations determined that the TMA and water reactions are thermodynamically favored on the stepped Pd(211) surface, consistent with previous observations. Furthermore, the DFT studies identified methylaluminum (AlCH3*, where the asterisk designates a surface species) as the most stable intermediate on Pd surfaces following the TMA exposures, and that AlCH3* transforms into Al(OH)3* species during the subsequent water pulse. The gas phase products observed using in situ QMS support this TMA dissociation/hydration mechanism. Taken together, the DFT and experimental results suggest a process in which the Pd surface becomes poisoned by adsorbed CH3* species during the TMA exposures that prevent the formation of a complete monolayer of adsorbed Al species. During the subsequent H2O exposures, the Pd surface is cleaned of CH3* species, and the net result is a porous Al2O3 film. This porous structure can retain the catalytic activity of the Pd NPs by providing reagent gases with access to the Pd surface sites, suggesting a promising route to stabilize active Pd catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI