血红素
夜蛾
CYP1A2
九氟化硫
血红素
化学
生物化学
分子生物学
生物
细胞色素P450
重组DNA
酶
基因
作者
Huiyuan Lu,Jun Ma,Nian Liu,Shoulin Wang
出处
期刊:Journal of Biomedical Research
[Journal of Biomedical Research]
日期:2010-05-01
卷期号:24 (3): 242-249
被引量:5
标识
DOI:10.1016/s1674-8301(10)60034-6
摘要
CYP1A2 and NADPH-CYP450 oxidoreductase (POR) were expressed in the baculovirus/Spodoptera frugiperda (sf9) system. The aim of this study was to investigate the effects of heme precursors on the expression of CYP1A2 and POR. The heme precursors [δ-Aminolaevulinic Acid (5-ALA), Fe3+ and hemin] were introduced into the system to evaluate their effects on the expression of CYP1A2, POR and their co-expression. All the proteins were identified using immunoblotting, CO-difference spectroscopy, or cytochrome c assay. In the present study, functional CYP1A2 and POR were successfully expressed in the baculovirus/sf9 system, and both of them showed high activities. Co-addition of 5-ALA and Fe3+ significantly improved expression of CYP1A2 by about 50% compared with the addition of 5-ALA, Fe3+ or hemin alone. Either co-addition of 5-ALA and Fe3+ or addition of 5-ALA or Fe3+ alone improved the POR expression level 2 fold and its activity 7–10 fold compared with control (no addition). However, unlike CYP1A2, there was no difference between the co-addition and addition of these heme precursors alone. Different ratios of BvCYP1A2 to BvPOR also affected the co-expression of CYP1A2 and POR, with a 3:1 ratio of BvCYP1A2/BvPOR significantly increasing their co-expression. Surprisingly, the addition of 0.1 mM 5-ALA or Fe3+ alone, but not their co-addition, could significantly improve the CYP1A2 and POR co-expression (P < 0.05). 5-ALA and Fe3+ increased the expression of CYP1A2 and POR in a baculovirus/sf9 system, but the pattern of their expression was different between their expression alone and co-expression.
科研通智能强力驱动
Strongly Powered by AbleSci AI