Investigation of the random forest framework for classification of hyperspectral data

随机森林 高光谱成像 计算机科学 子空间拓扑 随机子空间法 人工智能 分类器(UML) 模式识别(心理学) 二元分类 遥感 基本事实 统计分类 数据挖掘 支持向量机 地理
作者
Jeroen van der Ham,Yangchi Chen,Melba M. Crawford,Joydeep Ghosh
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:43 (3): 492-501 被引量:1098
标识
DOI:10.1109/tgrs.2004.842481
摘要

Statistical classification of byperspectral data is challenging because the inputs are high in dimension and represent multiple classes that are sometimes quite mixed, while the amount and quality of ground truth in the form of labeled data is typically limited. The resulting classifiers are often unstable and have poor generalization. This work investigates two approaches based on the concept of random forests of classifiers implemented within a binary hierarchical multiclassifier system, with the goal of achieving improved generalization of the classifier in analysis of hyperspectral data, particularly when the quantity of training data is limited. A new classifier is proposed that incorporates bagging of training samples and adaptive random subspace feature selection within a binary hierarchical classifier (BHC), such that the number of features that is selected at each node of the tree is dependent on the quantity of associated training data. Results are compared to a random forest implementation based on the framework of classification and regression trees. For both methods, classification results obtained from experiments on data acquired by the National Aeronautics and Space Administration (NASA) Airborne Visible/Infrared Imaging Spectrometer instrument over the Kennedy Space Center, Florida, and by Hyperion on the NASA Earth Observing 1 satellite over the Okavango Delta of Botswana are superior to those from the original best basis BHC algorithm and a random subspace extension of the BHC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三个土拔鼠完成签到,获得积分10
刚刚
刚刚
蜜雪冰城发布了新的文献求助10
刚刚
完美世界应助yutian928采纳,获得10
刚刚
在水一方应助木易采纳,获得10
1秒前
2秒前
2秒前
Tian发布了新的文献求助10
3秒前
个性的紫菜应助123采纳,获得10
3秒前
Geass发布了新的文献求助10
4秒前
啦啦啦发布了新的文献求助10
4秒前
4秒前
顾一刀发布了新的文献求助10
4秒前
1823完成签到,获得积分10
5秒前
大模型应助高媛采纳,获得10
5秒前
wan发布了新的文献求助10
5秒前
linkman发布了新的文献求助50
6秒前
洒脱完成签到,获得积分10
6秒前
一半可发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
jiujiu发布了新的文献求助10
7秒前
7秒前
ih38293发布了新的文献求助30
7秒前
8秒前
9秒前
nick liu123完成签到,获得积分10
10秒前
10秒前
11发布了新的文献求助10
10秒前
Jasper应助迷你的依凝采纳,获得30
11秒前
蜜雪冰城完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
xiao完成签到,获得积分10
12秒前
杨紫琴发布了新的文献求助10
13秒前
可爱的函函应助幸福鞯采纳,获得10
13秒前
烟花应助锅锅采纳,获得10
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603191
求助须知:如何正确求助?哪些是违规求助? 4012087
关于积分的说明 12421692
捐赠科研通 3692454
什么是DOI,文献DOI怎么找? 2035657
邀请新用户注册赠送积分活动 1068823
科研通“疑难数据库(出版商)”最低求助积分说明 953316