Failure Investigation of LiFePO4Cells under Overcharge Conditions

多收费 阳极 阴极 材料科学 电解质 金属 分离器(采油) 电极 化学工程 复合材料 冶金 化学 电池(电) 热力学 功率(物理) 物理 工程类 物理化学
作者
Fan Xu,Hao He,Yadong Liu,Clif Dun,Yang Ren,Qi Liu,Meixian Wang,Jian Xie
出处
期刊:Journal of The Electrochemical Society [The Electrochemical Society]
卷期号:159 (5): A678-A687 被引量:84
标识
DOI:10.1149/2.024206jes
摘要

The failure mechanism of LiFePO4 cells during overcharge conditions has been systematically studied using commercial A123 18650 cells at a 1C rate and different conditions – from 5% to 20% overcharge (SOC = 105% to 120%). SEM/EDX, high-energy synchrotron XRD (HESXRD), and cyclic voltammetry (CV) were used to characterize the morphology, structure, and electrode potentials of cell components both in situ and ex situ. The failure behaviors for A123 18650 cells experiencing different degrees of overcharges were found to be similar, and the 10% overcharge process was analyzed as the representative example. The Fe redox potentials in the 1.2 M LiPF6 EC/EMC electrolyte were measured during the overcharge/discharge process using CV, proving that Fe oxidation and reduction in the cell during the overcharge/discharge cycle is theoretically possible. A possible failure mechanism is proposed: during the overcharging process, metallic Fe oxidized first to Fe2+, then to Fe3+ cations; next, these Fe2+ and Fe3+ cations diffused to the anode side from the cathode side; and finally, these Fe3+ cations reduced first to Fe2+ cations, and then reduced further, back to metallic Fe. During overcharge/discharge cycling, Fe dendrites continued growing from both the anode and the cathode sides simultaneously, penetrating through the separator and forming an iron bridge between the anode and cathode. The iron bridge caused micro-shorting and eventually led to the failure of the cell. During the overcharge/discharge cycles, the continued cell temperature increase at the end of overcharge is evidence of the micro-shorting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
佳佳528发布了新的文献求助10
刚刚
刚刚
1秒前
二十三点一完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
紫荆完成签到 ,获得积分10
2秒前
司空踏歌发布了新的文献求助30
3秒前
量子星尘发布了新的文献求助30
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
夏夜微凉完成签到,获得积分10
5秒前
Nam22发布了新的文献求助10
5秒前
5秒前
Snoval完成签到,获得积分10
5秒前
干净的人达完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
曾经的无极完成签到,获得积分10
6秒前
17871635733完成签到,获得积分10
6秒前
6秒前
7秒前
爆米花应助问问问采纳,获得10
7秒前
8秒前
8秒前
xue发布了新的文献求助10
9秒前
9秒前
香蕉觅云应助Snoval采纳,获得10
9秒前
9秒前
gggggd完成签到,获得积分10
10秒前
天天快乐应助passion采纳,获得10
10秒前
青萍子林完成签到,获得积分10
10秒前
10秒前
infe完成签到,获得积分10
10秒前
稀饭发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894