分子成像
正电子发射断层摄影术
纳米技术
磁共振成像
生物分子
纳米生物技术
纳米颗粒
材料科学
磁性纳米粒子
荧光寿命成像显微镜
纳米医学
生物医学工程
计算机科学
荧光
体内
医学
物理
核医学
放射科
光学
生物技术
生物
作者
Jinwoo Cheon,Jae‐Hyun Lee
摘要
Current biomedical imaging techniques including magnetic resonance imaging (MRI), positron emission tomography (PET), and computed X-ray tomography (CT) are vital in the diagnosis of various diseases. Each imaging modality has its own merits and disadvantages, and a single technique does not possess all the required capabilities for comprehensive imaging. Therefore, multimodal imaging methods are quickly becoming important tools for state-of-the-art biomedical research and clinical diagnostics and therapeutics. In this Account, we will discuss synergistically integrated nanoparticle probes, which will be an essential tool in multimodal imaging technology. When inorganic nanoparticles are introduced into biological systems, their extremely small size and their exceptional physical and chemical properties make them useful probes for biological diagnostics. Nanoparticle probes can endow imaging techniques with enhanced signal sensitivity, better spatial resolution, and the ability to relay information about biological systems at the molecular and cellular levels. Simple magnetic nanoparticles function as MRI contrast enhancement probes. These magnetic nanoparticles can then serve as a core platform for the addition of other functional moieties including fluorescence tags, radionuclides, and other biomolecules for multimodal imaging, gene delivery, and cellular trafficking. For example, MRI-optical dual-modal probes composed of a fluorescent dye-doped silica (DySiO(2)) core surrounded by magnetic nanoparticles can macroscopically detect neuroblastoma cancer cells via MRI along with subcellular information via fluorescence imaging. Magnetic nanoparticles can also be coupled to radionuclides ((124)I) to construct MRI-PET dual-modal probes. Such probes can accurately detect lymph nodes (LNs), which are critical for assessing cancer metastasis. In vivo MRI/PET images can clearly identify small (approximately 3 mm) LNs along with precise anatomical information. Systems using multicomponent nanoparticles modified with biomolecules can also monitor gene expression and other markers in cell therapeutics studies. We have used hybrid stem cell-magnetic nanoparticle probes with MRI to monitor in vivo stem cell trafficking. MRI with hybrid probes of magnetic nanoparticles and adenovirus can detect target cells and can monitor gene delivery and the expression of green fluorescent proteins optically. Each component of such multimodal probes complements the other modalities, and their synergistic materials properties ultimately provide more accurate information in in vitro and in vivo biological systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI