烘烤
美拉德反应
化学
花生
过敏原
赖氨酸
食品科学
糖基化
食物过敏原
花生
生物化学
色谱法
过敏
生物
氨基酸
植物
免疫学
受体
物理化学
作者
Christine M. Hebling,Melinda A. McFarland,John H. Callahan,Mark M. Ross
摘要
Peanuts (Arachis hypogaea) are the cause of one of the most prevalent food allergies worldwide. Thermal processing (e.g., roasting) of peanuts and peanut-containing foods results in complex chemical reactions that alter structural conformations of peanut proteins, preventing accurate detection of allergens by most immunochemical and targeted screening methodologies. To improve food allergen detection and support more accurate food labeling, traditional methods for peanut protein extraction were modified to include protein denaturants and solubilization agents. Qualitative characterization by SDS-PAGE and Western blot analyses of raw and variably roasted peanut extracts confirmed improvements in total protein recovery and provided evidence for the incorporation of Ara h 1, Ara h 3, and, to a lesser extent, Ara h 2 into high molecular weight protein complexes upon roasting. Relative quantification of allergens in peanut lysates was accomplished by label-free spectral feature (MS1) LC-MS/MS methodologies, by which peanut allergen peptides exhibiting a differential MS response in raw versus roasted peanuts were considered to be candidate targets of thermal modification. Identification of lysine-modified Maillard advanced glycation endproducts (AGE) by LC-MS/MS confirmed the formation of (carboxymethyl)lysine (CML), (carboxyethyl)lysine (CEL), and pyrraline (Pyr) protein modifications on Ara h 1 and Ara h 3 tryptic peptides in roasted peanut varieties. These results suggest that complex processed food matrices require initial analysis by an untargeted LC-MS/MS approach to determine optimum analytes for subsequent targeted allergen analyses.
科研通智能强力驱动
Strongly Powered by AbleSci AI