Morphology-dependent nanocatalysts: Rod-shaped oxides

纳米材料基催化剂 催化作用 氧化物 纳米技术 材料科学 粒子(生态学) 纳米颗粒 形态学(生物学) 纳米 化学工程 金属 选择性 纳米尺度 Crystal(编程语言) 化学 有机化学 冶金 复合材料 工程类 程序设计语言 地质学 海洋学 生物 遗传学 计算机科学
作者
Yong Li,Wenjie Shen
出处
期刊:Chemical Society Reviews [The Royal Society of Chemistry]
卷期号:43 (5): 1543-1574 被引量:480
标识
DOI:10.1039/c3cs60296f
摘要

Nanocatalysts are characterised by the unique nanoscale properties that originate from their highly reduced dimensions. Extensive studies over the past few decades have demonstrated that the size and shape of a catalyst particle on the nanometre scale profoundly affect its reaction performance. In particular, controlling the catalyst particle morphology allows a selective exposure of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms or domains substantially improves catalytic activity, selectivity, and stability. This phenomenon is called morphology-dependent nanocatalysts: catalyst particles with anisotropic morphologies on the nanometre scale greatly affect the reaction performance by selectively exposing the desired facets. In this review, we highlight important progress in morphology-dependent nanocatalysts based on the use of rod-shaped metal oxides with characteristic redox and acid–base features. The correlation between the catalytic properties and the exposed facets verifies the chemical nature of the morphology effect. Moreover, we provide an overview of the interactions between the rod-shaped oxides and the metal nanoparticles in metal-oxide catalyst systems, involving crystal-facet-selective deposition of metal particles onto different crystal facets in the oxide supports. A fundamental understanding of active sites in morphologically tuneable oxides enclosed by the desired reactive facets is expected to direct the development of highly efficient nanocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
席老四发布了新的文献求助10
3秒前
xiaoma发布了新的文献求助10
4秒前
5秒前
upupup完成签到,获得积分10
6秒前
ZX801发布了新的文献求助10
6秒前
Jenny发布了新的文献求助30
7秒前
prosperp应助adsan采纳,获得50
7秒前
8秒前
琪音_xy发布了新的文献求助20
8秒前
9秒前
ru发布了新的文献求助10
9秒前
9秒前
席老四完成签到,获得积分10
11秒前
万能图书馆应助曾经不言采纳,获得10
12秒前
科研通AI5应助浴火重生采纳,获得10
12秒前
小二郎应助Wonder采纳,获得10
12秒前
Totravel完成签到,获得积分10
13秒前
科研通AI5应助ddkkkkkk采纳,获得10
13秒前
14秒前
猪猪hero发布了新的文献求助10
14秒前
14秒前
夏时安发布了新的文献求助10
15秒前
从容凌萱完成签到,获得积分20
15秒前
科研通AI5应助Cecilia采纳,获得10
16秒前
loong关注了科研通微信公众号
16秒前
17秒前
17秒前
渊崖曙春应助pp采纳,获得10
18秒前
Owen应助白华苍松采纳,获得10
19秒前
mascot0111完成签到,获得积分10
19秒前
小马甲应助滴滴哒哒采纳,获得10
19秒前
19秒前
19秒前
ccy完成签到 ,获得积分10
20秒前
20秒前
fifi04发布了新的文献求助30
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482716
求助须知:如何正确求助?哪些是违规求助? 3072248
关于积分的说明 9126270
捐赠科研通 2764017
什么是DOI,文献DOI怎么找? 1516797
邀请新用户注册赠送积分活动 701779
科研通“疑难数据库(出版商)”最低求助积分说明 700639