多巴胺转运体
伏隔核
多巴胺质膜转运蛋白
多巴胺
结合位点
纹状体
托烷
配体(生物化学)
壳核
运输机
化学
可卡因依赖
药理学
上瘾
立体化学
生物
生物化学
内分泌学
受体
神经科学
基因
作者
Julie K. Staley,William Lee Hearn,A. James Ruttenber,Charles V. Wetli,Deborah C. Mash
出处
期刊:PubMed
日期:1994-12-01
卷期号:271 (3): 1678-85
被引量:171
摘要
Cocaine mediates its powerful reinforcement by binding to recognition sites on the dopamine (DA) transporter. The pharmacological identity of cocaine recognition sites and their relevance to dopamine transport function has remained unclear. Ligand binding studies with transport inhibitors and cocaine congeners have provided evidence for multiple sites or "states" of the DA transporter. The potent cocaine congener [3H]WIN 35,428 ((CFT), 2B-carbomethoxy-3 beta-(4-fluorophenyl)-tropane) has been shown to recognize high and low affinity binding sites on the DA transporter. We have used [3H]WIN 35,428 to map and quantify the high affinity cocaine recognition site on the DA transporter in victims of fatal cocaine overdose. Region-of-interest densitometric analysis of the autoradiograms demonstrated a 2- to 3-fold elevation in the apparent density of [3H]WIN 35,428 binding in particular sectors of the striatum from victims of cocaine overdose as compared to age-matched and drug-free control subjects. The most marked increase in [3H]WIN 35,428 binding was seen in the nucleus accumbens. The apparent increase in the density of high affinity sites was confirmed by saturation binding analysis of [3H]WIN 35,428 to putamen membranes. Saturation analysis revealed high and low affinity binding components with affinities (KD values) of 4.3 +/- 1.2 and 84.7 +/- 19.7 nM (mean +/- S.E.) and densities of 9.9 +/- 4.0 and 193.0 +/- 28.6 pmol/g of tissue, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
科研通智能强力驱动
Strongly Powered by AbleSci AI