格子Boltzmann方法
伯格斯方程
非线性系统
分布函数
扩散方程
数学
水电站模型
对流扩散方程
热方程
玻尔兹曼方程
各向同性
数学分析
Bhatnagar–Gross–Krook操作员
费舍尔方程
统计物理学
物理
偏微分方程
积分微分方程
一阶偏微分方程
热力学
量子力学
经济
经济
雷诺数
湍流
服务(商务)
作者
Baochang Shi,Zhaoli Guo
标识
DOI:10.1103/physreve.79.016701
摘要
A lattice Boltzmann model for convection-diffusion equation with nonlinear convection and isotropic-diffusion terms is proposed through selecting equilibrium distribution function properly. The model can be applied to the common real and complex-valued nonlinear evolutionary equations, such as the nonlinear Schr\"odinger equation, complex Ginzburg-Landau equation, Burgers-Fisher equation, nonlinear heat conduction equation, and sine-Gordon equation, by using a real and complex-valued distribution function and relaxation time. Detailed simulations of these equations are performed, and it is found that the numerical results agree well with the analytical solutions and the numerical solutions reported in previous studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI