碳纳米管
安培法
生物传感器
复合数
电极
纳米技术
化学
葡萄糖氧化酶
石墨
电化学
复合材料
化学工程
材料科学
物理化学
工程类
作者
Joseph Wang,Mustafa Musameh
摘要
The fabrication and attractive performance of carbon nanotube (CNT)/Teflon composite electrodes, based on the dispersion of CNT within a Teflon binder, are described. The resulting CNT/Teflon material brings new capabilities for electrochemical devices by combining the advantages of CNT and "bulk" composite electrodes. The electrocatalytic properties of CNT are not impaired by their association with the Teflon binder. The marked electrocatalytic activity toward hydrogen peroxide and NADH permits effective low-potential amperometric biosensing of glucose and ethanol, respectively, in connection with the incorporation of glucose oxidase and alcohol dehydrogenase/NAD(+) within the three-dimensional CNT/Teflon matrix. The accelerated electron transfer is coupled with minimization of surface fouling and surface renewability. These advantages of CNT-based composite devices are illustrated from comparison to their graphite/Teflon counterparts. The influence of the CNT loading upon the amperometric and voltammetric data, as well as the electrode resistance, is examined. SEM images offer insights into the nature of the CNT/Teflon surface. The preparation of CNT/Teflon composites overcomes a major obstacle for creating CNT-based biosensing devices and expands the scope of CNT-based electrochemical devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI