埃洛石
材料科学
化学工程
解吸
吸附
复合材料
化学
有机化学
工程类
作者
R R Price,Bruce P. Gaber,Yuri Lvov
标识
DOI:10.1080/02652040010019532
摘要
The use of halloysite clay as a low cost alternative to more traditional microencapsulation systems is reported. Halloysite is an alumino-silicate clay which demonstrates a predominately cylindrical geometry, uniquely characterized by a hollow core or series of voids with diameters ranging from 16-50 nm. These nanoscale-to-mesoscale microcylinders are capable of entrapping active agents within the core lumen as well as within any void spaces contained in the multilayered walls of the cylinder. Some of the active agents associated with the clay are also bound to the external surfaces of the clay. Delivery of the active agent is first by desorption of the active agent from the exterior surfaces and exposed ends of the microcylinders, and is followed by a second more prolonged phase dominated by pore diffusion from the ends of the cylinders. Halloysite is capable of retaining and releasing a range of active ingredients. Both hydrophilic and hydrophobic agents may be entrapped following appropriate pre-treatment of the clay to render it lipophilic. Here, a unique low cost alternative microcylindrical delivery system: the clay mineral halloysite, is investigated.
科研通智能强力驱动
Strongly Powered by AbleSci AI