N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells

生物 N6-甲基腺苷 基因敲除 细胞生物学 胚胎干细胞 甲基转移酶 信使核糖核酸 小RNA 甲基化 核糖核酸 RNA甲基化 基因表达调控 细胞命运测定 长非编码RNA 基因表达 基因 遗传学 转录因子
作者
Yan Wang,Yue Li,Julia I. Toth,Matthew D. Petroski,Zhaolei Zhang,Jing Zhao
出处
期刊:Nature Cell Biology [Springer Nature]
卷期号:16 (2): 191-198 被引量:1035
标识
DOI:10.1038/ncb2902
摘要

N6-methyladenosine (m6A) is an abundant internal modification of messenger RNA (mRNA) that has been reported recently in thousands of mammalian mRNAs and long non-coding RNAs (lncRNAs). Zhao and colleagues identify two methyltransferases responsible for this modification in mammalian cells, and demonstrate that they are required for embryonic stem cell self-renewal maintenance through an effect of the modification on the degradation of developmental regulator transcripts. N6-methyladenosine (m6A) has been identified as the most abundant internal modification of messenger RNA in eukaryotes1. m6A modification is involved in cell fate determination in yeast2,3 and embryo development in plants4,5. Its mammalian function remains unknown but thousands of mammalian mRNAs and long non-coding RNAs (lncRNAs) show m6A modification6,7 and m6A demethylases are required for mammalian energy homeostasis and fertility8,9. We identify two proteins, the putative m6A MTase, methyltransferase-like 3 (Mettl3; ref. 10), and a related but uncharacterized protein Mettl14, that function synergistically to control m6A formation in mammalian cells. Knockdown of Mettl3 and Mettl14 in mouse embryonic stem cells (mESCs) led to similar phenotypes, characterized by lack of m6A RNA methylation and lost self-renewal capability. A large number of transcripts, including many encoding developmental regulators, exhibit m6A methylation inversely correlated with mRNA stability and gene expression. The human antigen R (HuR) and microRNA pathways were linked to these effects. This gene regulatory mechanism operating in mESCs through m6A methylation is required to keep mESCs at their ground state and may be relevant to thousands of mRNAs and lncRNAs in various cell types.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkk完成签到 ,获得积分10
刚刚
哭泣的映寒完成签到 ,获得积分10
1秒前
YiXianCoA完成签到 ,获得积分10
1秒前
专注半烟完成签到 ,获得积分10
5秒前
even完成签到 ,获得积分10
8秒前
8秒前
zzzyyc完成签到 ,获得积分10
16秒前
小李完成签到 ,获得积分10
19秒前
loga80完成签到,获得积分0
20秒前
aowulan完成签到 ,获得积分10
20秒前
xy完成签到,获得积分10
22秒前
hanshishengye完成签到 ,获得积分10
22秒前
25秒前
25秒前
Beyond095完成签到,获得积分10
26秒前
27秒前
木又完成签到 ,获得积分10
28秒前
陈诗柳完成签到 ,获得积分10
29秒前
苏南完成签到 ,获得积分10
29秒前
cis2014完成签到,获得积分10
30秒前
WSYang完成签到,获得积分10
32秒前
迈克老狼完成签到 ,获得积分10
34秒前
shrimp5215完成签到,获得积分10
34秒前
littleE完成签到 ,获得积分10
35秒前
鱼儿忆流年完成签到 ,获得积分10
36秒前
applepie完成签到,获得积分10
37秒前
材料若饥完成签到,获得积分10
40秒前
饱满语风完成签到 ,获得积分10
42秒前
Sam完成签到,获得积分10
43秒前
美海与鱼完成签到,获得积分10
49秒前
子非鱼完成签到 ,获得积分10
50秒前
50秒前
快乐的土土完成签到 ,获得积分10
52秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
咻咻应助科研通管家采纳,获得20
54秒前
NexusExplorer应助科研通管家采纳,获得10
54秒前
57秒前
Clover完成签到 ,获得积分10
58秒前
1分钟前
余鱼鱼发布了新的文献求助10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311313
求助须知:如何正确求助?哪些是违规求助? 2944006
关于积分的说明 8516883
捐赠科研通 2619447
什么是DOI,文献DOI怎么找? 1432306
科研通“疑难数据库(出版商)”最低求助积分说明 664597
邀请新用户注册赠送积分活动 649856