Folding DNA to create nanoscale shapes and patterns

DNA折纸 折叠(DSP实现) 寡核苷酸 生物系统 纳米技术 随机六聚体 四面体 纳米结构 DNA DNA纳米技术 纳米尺度 计算机科学 化学 拓扑(电路) 材料科学 结晶学 数学 生物 生物化学 电气工程 工程类 组合数学
作者
Paul W. K. Rothemund
出处
期刊:Nature [Springer Nature]
卷期号:440 (7082): 297-302 被引量:6620
标识
DOI:10.1038/nature04586
摘要

‘Bottom-up fabrication’, which exploits the intrinsic properties of atoms and molecules to direct their self-organization, is widely used to make relatively simple nanostructures. A key goal for this approach is to create nanostructures of high complexity, matching that routinely achieved by ‘top-down’ methods. The self-assembly of DNA molecules provides an attractive route towards this goal. Here I describe a simple method for folding long, single-stranded DNA molecules into arbitrary two-dimensional shapes. The design for a desired shape is made by raster-filling the shape with a 7-kilobase single-stranded scaffold and by choosing over 200 short oligonucleotide ‘staple strands’ to hold the scaffold in place. Once synthesized and mixed, the staple and scaffold strands self-assemble in a single step. The resulting DNA structures are roughly 100 nm in diameter and approximate desired shapes such as squares, disks and five-pointed stars with a spatial resolution of 6 nm. Because each oligonucleotide can serve as a 6-nm pixel, the structures can be programmed to bear complex patterns such as words and images on their surfaces. Finally, individual DNA structures can be programmed to form larger assemblies, including extended periodic lattices and a hexamer of triangles (which constitutes a 30-megadalton molecular complex). DNA is a popular building block for nanostructures as it combines self-assembly with programmability and a plethora of chemical techniques for its manipulation. There is an extensive literature on DNA nanomaterials, but a procedure described this week breaks many of the fabrication rules established in the field. Paradoxically, although it ignores sequence design, strand purity and strand concentration ratios, the new method yields DNA nanostructures that are larger and more complex than previously possible. The one-pot method uses a few hundred short DNA strands to ‘staple’ a very long strand into two-dimensional structures that adopt any desired shape, like the ‘nanoface’ on the cover. Individual staples can be made into nanometre-scale pixels that create surface patterns on a given 100-nm shape (like the Americas map and snowflakes), or to combine shapes into larger structures (the hexagon of triangles). A robust, versatile, one-pot bottom-up nanotechnology fabrication method uses a few-hundred short DNA strands to 'staple' a very long strand into two-dimensional structures of 100 nm in diameter and resembling any desired shape, such as squares, 'nanofaces' and stars.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Snoopy_Swan完成签到,获得积分20
2秒前
酷酷白猫完成签到,获得积分10
2秒前
雨纷纷完成签到,获得积分10
3秒前
4秒前
李爱国应助小冥童鞋采纳,获得10
4秒前
baiyi2024发布了新的文献求助10
5秒前
5秒前
qiongqiong完成签到,获得积分10
5秒前
Snoopy_Swan发布了新的文献求助10
5秒前
超级灰狼发布了新的文献求助10
5秒前
ggg完成签到,获得积分10
6秒前
wj完成签到 ,获得积分10
6秒前
大模型应助吉吉采纳,获得10
7秒前
yaoyao发布了新的文献求助10
7秒前
Aling应助赵雪采纳,获得10
7秒前
8秒前
8秒前
8秒前
Thing完成签到,获得积分10
9秒前
由哎发布了新的文献求助10
10秒前
沉123完成签到,获得积分10
12秒前
Xenia发布了新的文献求助10
12秒前
栗子发布了新的文献求助10
12秒前
唠叨的白玉完成签到,获得积分20
12秒前
敏感的惜文完成签到,获得积分10
14秒前
雪白问兰应助yaoyao采纳,获得10
14秒前
doge发布了新的文献求助10
14秒前
可爱天川完成签到,获得积分20
14秒前
chenzao完成签到 ,获得积分10
15秒前
15秒前
19秒前
虾米YYY应助Leo采纳,获得10
19秒前
19秒前
LCCCC完成签到,获得积分10
20秒前
沧海完成签到,获得积分10
20秒前
kousaidzx发布了新的文献求助20
21秒前
yogurt_tju发布了新的文献求助30
21秒前
脑洞疼应助iuv采纳,获得10
22秒前
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160242
求助须知:如何正确求助?哪些是违规求助? 2811282
关于积分的说明 7891712
捐赠科研通 2470390
什么是DOI,文献DOI怎么找? 1315472
科研通“疑难数据库(出版商)”最低求助积分说明 630850
版权声明 602038