数学
次谐波函数
点式的
Hausdorff测度
数学分析
非线性系统
Dirichlet问题
纯数学
势理论
次谐波
Dirichlet分布
度量(数据仓库)
引力奇点
边值问题
豪斯多夫维数
物理
数据库
量子力学
计算机科学
标识
DOI:10.1215/s0012-7094-02-11111-9
摘要
We study the pointwise properties of $k$-subharmonic functions, that is, the viscosity subsolutions to the fully nonlinear elliptic equations $F_k[u]=0$, where $F_k[u]$ is the elementary symmetric function of order $k,1\leq k\leq n$, of the eigenvalues of $[D\sp 2u]$, $F_1[u]=\Delta u,F_n[u]=\det D^2u$. Thus $1$-subharmonic functions are subharmonic in the classical sense; $n$-subharmonic functions are convex. We use a special capacity to investigate the typical questions of potential theory: local behaviour, removability of singularities, and polar, negligible, and thin sets, and we obtain estimates for the capacity in terms of the Hausdorff measure. We also prove the Wiener test for the regularity of a boundary point for the Dirichlet problem for the fully nonlinear equation $F_k[u]=0$. The crucial tool in the proofs of these results is the Radon measure $F_k[u]$ introduced recently by N. Trudinger and X.-J. Wang for any $k$-subharmonic $u$. We use ideas from the potential theories both for the complex Monge-Ampère and for the $p$-Laplace equations.
科研通智能强力驱动
Strongly Powered by AbleSci AI