Image-based material decomposition with a general volume constraint for photon-counting CT

投影(关系代数) 体积热力学 分解 计算机科学 探测器 约束(计算机辅助设计) 校准 光子计数 基础(线性代数) 先验与后验 能量(信号处理) 迭代重建 扫描仪 光子 算法 光学 材料科学 计算机视觉 人工智能 物理 数学 统计 化学 有机化学 认识论 量子力学 电信 哲学 几何学
作者
Zhoubo Li,Shuai Leng,Lifeng Yu,Zhicong Yu,Cynthia H. McCollough
出处
期刊:Proceedings of SPIE 被引量:25
标识
DOI:10.1117/12.2082069
摘要

Photon-counting CT (PCCT) potentially offers both improved dose efficiency and material decomposition capabilities relative to CT systems using energy integrating detectors. With respect to material decomposition, both projection-based and image-based methods have been proposed, most of which require accurate a priori information regarding the shape of the x-ray spectra and the response of the detectors. Additionally, projection-based methods require access to projection data. These data can be difficult to obtain, since spectra, detector response, and projection data formats are proprietary information. Further, some published image-based, 3-material decomposition methods require a volume conservation assumption, which is often violated in solutions. We have developed an image-based material decomposition method that can overcome those limitations. We introduced a general condition on volume constraint that does not require the volume to be conserved in a mixture. An empirical calibration can be performed with various concentrations of basis materials. The material decomposition method was applied to images acquired from a prototype whole-body PCCT scanner. The results showed good agreement between the estimation and known mass concentration values. Factors affecting the performance of material decomposition, such as energy threshold configuration and volume conservation constraint, were also investigated. Changes in accuracy of the mass concentration estimates were demonstrated for four different energy configurations and when volume conservation was assumed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
华仔应助科研通管家采纳,获得10
刚刚
刚刚
Ma发布了新的文献求助10
1秒前
lalala发布了新的文献求助20
1秒前
2秒前
2秒前
2秒前
小杨完成签到,获得积分10
3秒前
4秒前
123发布了新的文献求助10
5秒前
Ma完成签到,获得积分10
6秒前
llcllc发布了新的文献求助10
6秒前
子车半烟完成签到,获得积分10
7秒前
8秒前
Emmalee完成签到,获得积分10
8秒前
Susan完成签到,获得积分10
9秒前
LucienS发布了新的文献求助10
11秒前
11秒前
所所应助GAO采纳,获得10
13秒前
falling_learning完成签到 ,获得积分10
14秒前
欧阳铭发布了新的文献求助10
17秒前
丘比特应助Emmalee采纳,获得30
17秒前
彭于晏应助马66采纳,获得10
18秒前
18秒前
18秒前
20秒前
21秒前
星空下的皮先生完成签到,获得积分10
23秒前
陈tl完成签到,获得积分10
23秒前
24秒前
练习者发布了新的文献求助10
25秒前
27秒前
自信的雪糕完成签到,获得积分10
30秒前
领导范儿应助孩子气采纳,获得10
31秒前
练习者完成签到,获得积分10
32秒前
小晚完成签到,获得积分10
33秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967872
求助须知:如何正确求助?哪些是违规求助? 3512982
关于积分的说明 11165825
捐赠科研通 3248059
什么是DOI,文献DOI怎么找? 1794090
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578