A Heuristic Algorithm for the Vehicle-Dispatch Problem

计算 算法 计算机科学 数学优化 启发式 常量(计算机编程) 数学 程序设计语言
作者
Billy E. Gillett,Leland R. Miller
出处
期刊:Operations Research [Institute for Operations Research and the Management Sciences]
卷期号:22 (2): 340-349 被引量:1127
标识
DOI:10.1287/opre.22.2.340
摘要

This paper introduces and illustrates an efficient algorithm, called the sweep algorithm, for solving medium- as well as large-scale vehicle-dispatch problems with load and distance constraints for each vehicle. The locations that are used to make up each route are determined according to the polar-coordinate angle for each location. An iterative procedure is then used to improve the total distance traveled over all routes. The algorithm has the feature that the amount of computation required increases linearly with the number of locations if the average number of locations for each route remains relatively constant. For example, if the average number of locations per route is 7.5, the algorithm takes approximately 75 seconds to solve a 75-location problem on an IBM 360/67 and approximately 115 seconds to solve a 100-location problem. In contrast, the time to solve a problem with a fixed number of locations increases quadratically with the average number of locations per route. The sweep algorithm generally produces results that are significantly better than those produced by Gaskell's savings approach and are generally slightly better than Christofides and Eilon's results; however, the sweep algorithm is not as computationally efficient as Gaskell's and is slightly less so than Christofides and Eilon's.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HYT完成签到,获得积分10
1秒前
乐乐应助夏天采纳,获得10
2秒前
yi完成签到 ,获得积分10
2秒前
3秒前
辣目童子关注了科研通微信公众号
4秒前
5秒前
爱笑灵竹应助zeroayanami0采纳,获得50
6秒前
8秒前
10秒前
称心翠容完成签到,获得积分10
12秒前
小二郎应助像鱼采纳,获得10
13秒前
时尚数据线完成签到,获得积分10
13秒前
16秒前
夏天发布了新的文献求助10
16秒前
果粒红豆豆完成签到,获得积分10
17秒前
李爱国应助海潮采纳,获得10
18秒前
大模型应助二指断沧澜采纳,获得10
18秒前
19秒前
LZJ完成签到,获得积分10
20秒前
玩命的靖仇完成签到,获得积分10
21秒前
辣目童子发布了新的文献求助30
22秒前
25秒前
YYJ发布了新的文献求助10
30秒前
胆大党关注了科研通微信公众号
30秒前
Yziii应助山生有杏采纳,获得20
31秒前
31秒前
31秒前
QSJ完成签到,获得积分10
34秒前
34秒前
陌浅然发布了新的文献求助10
34秒前
RBE小陈完成签到 ,获得积分10
34秒前
JamesPei应助TKMY采纳,获得10
34秒前
忧郁若菱完成签到,获得积分20
36秒前
bkagyin应助称心茹嫣采纳,获得10
37秒前
38秒前
日新又新完成签到,获得积分10
40秒前
白天完成签到,获得积分10
41秒前
Dddd发布了新的文献求助10
41秒前
乐乐应助Aicc采纳,获得10
43秒前
45秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157313
求助须知:如何正确求助?哪些是违规求助? 2808757
关于积分的说明 7878369
捐赠科研通 2467114
什么是DOI,文献DOI怎么找? 1313219
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919