Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS–ADRDA criteria

疾病 医学 老年学 心理学 语言学 历史 病理 哲学
作者
Bruno Dubois,Howard Feldman,Claudia Jacova,Steven T. DeKosky,Pascale Barberger‐Gateau,Jeffrey L. Cummings,André Delacourte,Douglas Galasko,Serge Gauthier,Gregory A. Jicha,Kenichi Meguro,John T. O’Brien,Florence Pasquier,Philippe Robert,Martin N. Rossor,Steven Salloway,Yaakov Stern,Pieter Jelle Visser,Philip Scheltens
出处
期刊:Lancet Neurology [Elsevier BV]
卷期号:6 (8): 734-746 被引量:4224
标识
DOI:10.1016/s1474-4422(07)70178-3
摘要

The NINCDS–ADRDA and the DSM-IV-TR criteria for Alzheimer's disease (AD) are the prevailing diagnostic standards in research; however, they have now fallen behind the unprecedented growth of scientific knowledge. Distinctive and reliable biomarkers of AD are now available through structural MRI, molecular neuroimaging with PET, and cerebrospinal fluid analyses. This progress provides the impetus for our proposal of revised diagnostic criteria for AD. Our framework was developed to capture both the earliest stages, before full-blown dementia, as well as the full spectrum of the illness. These new criteria are centred on a clinical core of early and significant episodic memory impairment. They stipulate that there must also be at least one or more abnormal biomarkers among structural neuroimaging with MRI, molecular neuroimaging with PET, and cerebrospinal fluid analysis of amyloid β or tau proteins. The timeliness of these criteria is highlighted by the many drugs in development that are directed at changing pathogenesis, particularly at the production and clearance of amyloid β as well as at the hyperphosphorylation state of tau. Validation studies in existing and prospective cohorts are needed to advance these criteria and optimise their sensitivity, specificity, and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TT发布了新的文献求助10
刚刚
卡拉蹦蹦完成签到 ,获得积分10
1秒前
科研通AI5应助迅速又菡采纳,获得10
1秒前
科研通AI2S应助XYN1采纳,获得10
1秒前
1秒前
可靠的芒果完成签到,获得积分10
2秒前
ding应助轻松旭尧采纳,获得10
3秒前
王王王完成签到,获得积分10
3秒前
轨迹发布了新的文献求助20
4秒前
脑洞疼应助自然的致远采纳,获得10
6秒前
higher荔枝完成签到 ,获得积分10
6秒前
糖糖完成签到,获得积分10
7秒前
7秒前
丘比特应助标致逊采纳,获得10
9秒前
10秒前
10秒前
梦梦发布了新的文献求助10
11秒前
11秒前
是阿乔呢完成签到,获得积分10
12秒前
温暖寻雪完成签到,获得积分10
12秒前
12秒前
14秒前
温暖寻雪发布了新的文献求助10
14秒前
GCS12发布了新的文献求助10
16秒前
田様应助狂炫一大晚采纳,获得10
17秒前
17秒前
啾啾发布了新的文献求助10
18秒前
21秒前
Jianjian发布了新的文献求助10
21秒前
danporzhu完成签到,获得积分10
22秒前
半面妆发布了新的文献求助10
22秒前
wanwan完成签到,获得积分10
23秒前
GCS12发布了新的文献求助10
26秒前
27秒前
27秒前
lucky完成签到,获得积分10
29秒前
29秒前
半面妆完成签到,获得积分20
29秒前
誓信发布了新的文献求助30
31秒前
lucky发布了新的文献求助10
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3727881
求助须知:如何正确求助?哪些是违规求助? 3272958
关于积分的说明 9979258
捐赠科研通 2988340
什么是DOI,文献DOI怎么找? 1639535
邀请新用户注册赠送积分活动 778803
科研通“疑难数据库(出版商)”最低求助积分说明 747817