This work examines the use of crystal based continuum mechanics in the context of dynamic loading. In particular, we examine model forms and simulations which are relevant to pore collapse in crystalline energetic materials. Strain localization and the associated generation of heat are important for the initiation of chemical reactions in this context. The crystal mechanics based model serves as a convenient testbed for the interactions among wave motion, slip kinetics, defect generation kinetics and physical length scale. After calibration to available molecular dynamics and single crystal gas gun data for HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), the model is used to predict behaviors for the collapse of pores under various conditions. Implications for experimental observations are discussed.