已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Empirical Analysis of the Impact of Recommender Systems on Sales

推荐系统 情感(语言学) 灵活性(工程) 计算机科学 业务 实证研究 价值(数学) 营销 集合(抽象数据类型) 广告 万维网 经济 管理 程序设计语言 哲学 机器学习 认识论 语言学
作者
Bhavik K. Pathak,Robert Garfinkel,Ram D. Gopal,Rajkumar Venkatesan,Fang Yin
出处
期刊:Journal of Management Information Systems [Taylor & Francis]
卷期号:27 (2): 159-188 被引量:314
标识
DOI:10.2753/mis0742-1222270205
摘要

Online retailers are increasingly using information technologies to provide value-added services to customers. Prominent examples of these services are online recommender systems and consumer feedback mechanisms, both of which serve to reduce consumer search costs and uncertainty associated with the purchase of unfamiliar products. The central question we address is how recommender systems affect sales. We take into consideration the interaction among recommendations, sales, and price. We then develop a robust empirical model that incorporates the indirect effect of recommendations on sales through retailer pricing, potential simultaneity between sales and recommendations, and a comprehensive measure of the strength of recommendations. Applying the model to a panel data set collected from two online retailers, we found that the strength of recommendations has a positive effect on sales. Moreover, this effect is moderated by the recency effect, where more recently released recommended items positively affect the cross-selling efforts of sellers. We also show that recommender systems help to reinforce the long-tail phenomenon of electronic commerce, and obscure recommendations positively affect cross-selling. We also found a positive effect of recommendations on prices. These results suggest that recommendations not only improve sales but they also provide added flexibility to retailers to adjust their prices. A comparative analysis reveals that recommendations have a higher effect on sales than does consumer feedback. Our empirical results show that providing value-added services, such as digital word of mouth and recommendations, allows retailers to charge higher prices while at the same time increasing demand by providing more information regarding the quality and match of products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小孟同学完成签到,获得积分20
刚刚
端庄的曼云关注了科研通微信公众号
1秒前
LeuinPonsgi发布了新的文献求助10
3秒前
AAA应助夏爽2023采纳,获得50
3秒前
3秒前
zhangsenbing发布了新的文献求助10
3秒前
JamesPei应助变化是永恒的采纳,获得10
4秒前
Mingway发布了新的文献求助10
7秒前
我是老大应助sci采纳,获得10
8秒前
LTT发布了新的文献求助10
10秒前
天真台灯发布了新的文献求助20
12秒前
柠九完成签到,获得积分10
12秒前
宋芽芽u完成签到 ,获得积分10
12秒前
LeuinPonsgi完成签到,获得积分10
12秒前
幽默夜阑完成签到,获得积分10
14秒前
RCRCRC1995完成签到 ,获得积分20
18秒前
guo完成签到 ,获得积分10
19秒前
Mingway完成签到,获得积分10
20秒前
20秒前
zyz完成签到 ,获得积分10
23秒前
朱诗佳发布了新的文献求助10
25秒前
27秒前
柠九发布了新的文献求助10
27秒前
隐形曼青应助RR采纳,获得10
28秒前
28秒前
30秒前
科研小白完成签到,获得积分10
31秒前
31秒前
32秒前
32秒前
半_发布了新的文献求助10
32秒前
番茄酱发布了新的文献求助10
34秒前
zyx发布了新的文献求助10
35秒前
朴素曼岚关注了科研通微信公众号
37秒前
Akim应助zhangsenbing采纳,获得20
39秒前
41秒前
风中小刺猬完成签到,获得积分10
41秒前
43秒前
情怀应助番茄酱采纳,获得10
43秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396