光滑粒子流体力学
表面张力
背景(考古学)
边值问题
机械
流量(数学)
方位(导航)
机械工程
工作(物理)
航空航天工程
边界(拓扑)
计算机科学
模拟
物理
工程类
地质学
量子力学
数学分析
古生物学
人工智能
数学
作者
A.C.H. Kruisbrink,Hervé Morvan,F.R. Pearce
摘要
In this paper some novel Smoothed Particle Hydrodynamics (SPH) concepts are presented towards a feasibility study into the use of SPH for some aero-engine applications, e.g. for internal oil or fuel applications. A first challenge is to develop a capability to model complex wall geometries, associated with two-phase flows in gear boxes and bearing chambers for example. A demonstration is made of how such complex (for SPH) geometries can be built together with an outline of some of the wall boundary condition concepts used, including moving walls. This is an important feature for the application of SPH to engineering. Other boundary conditions are needed such as inlets, outlets and pressure boundaries, and a proper treatment of the free surface. These are outlined in the context of the proposed application. From an SPH flow simulation viewpoint, one of the challenges is to reduce the non-physical density variations arising from boundary conditions (at wall, free surface and interface), which are responsible for non-physical pressure variations and particle dynamics. The flow regimes found in the engineering systems outlined above involve droplets, filaments and films. It is therefore important to be able to handle the merging of fluids, as it is to model their interaction with another phase, which calls for appropriate multi-fluid and surface tension models. This paper introduces SPH, outlines a number of concepts listed above and presents some preliminary results towards the modeling of the KIT bearing chamber, as described by Kurz et al. [1]. This work builds on a number of numerical modeling communications made by the Nottingham team to SPHERIC, the ERCOFTAC Special Interest Group (SIG) for SPH.
科研通智能强力驱动
Strongly Powered by AbleSci AI