Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon

超级电容器 电容器 材料科学 电解电容器 储能 聚合物电容器 薄膜电容器 光电子学 电容 电化学 电极 纳米技术 功率密度 电解质 功率(物理) 电气工程 电压 化学 量子力学 物理 工程类 物理化学
作者
David Pech,Brunet Magali,Hugo Durou,Peihua Huang,Vadym N. Mochalin,Yury Gogotsi,Pierre‐Louis Taberna,Patrice Simon
出处
期刊:Nature Nanotechnology [Springer Nature]
卷期号:5 (9): 651-654 被引量:2612
标识
DOI:10.1038/nnano.2010.162
摘要

Electrochemical capacitors, also called supercapacitors, store energy in two closely spaced layers with opposing charges, and are used to power hybrid electric vehicles, portable electronic equipment and other devices1. By offering fast charging and discharging rates, and the ability to sustain millions of cycles2,3,4,5, electrochemical capacitors bridge the gap between batteries, which offer high energy densities but are slow, and conventional electrolytic capacitors, which are fast but have low energy densities. Here, we demonstrate microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume that are an order of magnitude higher. We also measured discharge rates of up to 200 V s−1, which is three orders of magnitude higher than conventional supercapacitors. The microsupercapacitors are produced by the electrophoretic deposition of a several-micrometre-thick layer of nanostructured carbon onions6,7 with diameters of 6–7 nm. Integration of these nanoparticles in a microdevice with a high surface-to-volume ratio, without the use of organic binders and polymer separators, improves performance because of the ease with which ions can access the active material. Increasing the energy density and discharge rates of supercapacitors will enable them to compete with batteries and conventional electrolytic capacitors in a number of applications. Micrometre-thick supercapacitors made from onion-like carbon nanoparticles exhibit orders of magnitude higher capacitance and energy density compared with electrolytic capacitors, and much higher charging/discharging rates than conventional supercapacitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃的雪珊完成签到 ,获得积分10
刚刚
Tuniverse_完成签到 ,获得积分10
1秒前
优美一鸣发布了新的文献求助10
1秒前
2秒前
领导范儿应助lipo采纳,获得200
3秒前
威威完成签到,获得积分10
4秒前
学术蛔虫完成签到,获得积分10
5秒前
5秒前
5秒前
yuans完成签到,获得积分10
6秒前
万能图书馆应助鲤鱼千亦采纳,获得10
6秒前
不才发布了新的文献求助10
10秒前
浮游应助故意的冰烟采纳,获得10
12秒前
高挑的沛珊完成签到,获得积分10
12秒前
13秒前
13秒前
Lisa田完成签到 ,获得积分10
13秒前
麦芽糖完成签到,获得积分10
13秒前
00发布了新的文献求助150
13秒前
13秒前
香蕉觅云应助hx采纳,获得10
14秒前
16秒前
流星雨完成签到,获得积分10
16秒前
梓榆发布了新的文献求助10
17秒前
18秒前
可爱的函函应助你奈我何采纳,获得10
19秒前
20秒前
LXY发布了新的文献求助10
20秒前
金江客死完成签到 ,获得积分10
21秒前
爆米花应助笨笨小白熊采纳,获得10
21秒前
22秒前
22秒前
科研通AI6应助四月采纳,获得10
22秒前
23秒前
baobaoxiong发布了新的文献求助10
23秒前
23秒前
彭于晏应助yucj采纳,获得10
23秒前
lipo发布了新的文献求助200
25秒前
大个应助零零采纳,获得10
26秒前
Kylin完成签到,获得积分10
26秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384713
求助须知:如何正确求助?哪些是违规求助? 4507566
关于积分的说明 14028354
捐赠科研通 4417204
什么是DOI,文献DOI怎么找? 2426357
邀请新用户注册赠送积分活动 1419123
关于科研通互助平台的介绍 1397426