Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon

超级电容器 电容器 材料科学 电解电容器 储能 聚合物电容器 薄膜电容器 光电子学 电容 电化学 电极 纳米技术 功率密度 电解质 功率(物理) 电气工程 电压 化学 物理 物理化学 量子力学 工程类
作者
David Pech,Brunet Magali,Hugo Durou,Peihua Huang,Vadym N. Mochalin,Yury Gogotsi,Pierre‐Louis Taberna,Patrice Simon
出处
期刊:Nature Nanotechnology [Nature Portfolio]
卷期号:5 (9): 651-654 被引量:2612
标识
DOI:10.1038/nnano.2010.162
摘要

Electrochemical capacitors, also called supercapacitors, store energy in two closely spaced layers with opposing charges, and are used to power hybrid electric vehicles, portable electronic equipment and other devices1. By offering fast charging and discharging rates, and the ability to sustain millions of cycles2,3,4,5, electrochemical capacitors bridge the gap between batteries, which offer high energy densities but are slow, and conventional electrolytic capacitors, which are fast but have low energy densities. Here, we demonstrate microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume that are an order of magnitude higher. We also measured discharge rates of up to 200 V s−1, which is three orders of magnitude higher than conventional supercapacitors. The microsupercapacitors are produced by the electrophoretic deposition of a several-micrometre-thick layer of nanostructured carbon onions6,7 with diameters of 6–7 nm. Integration of these nanoparticles in a microdevice with a high surface-to-volume ratio, without the use of organic binders and polymer separators, improves performance because of the ease with which ions can access the active material. Increasing the energy density and discharge rates of supercapacitors will enable them to compete with batteries and conventional electrolytic capacitors in a number of applications. Micrometre-thick supercapacitors made from onion-like carbon nanoparticles exhibit orders of magnitude higher capacitance and energy density compared with electrolytic capacitors, and much higher charging/discharging rates than conventional supercapacitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助zhongbo采纳,获得10
1秒前
所所应助朴素太阳采纳,获得10
1秒前
linhanwenzhou发布了新的文献求助10
1秒前
2秒前
Jasper应助jianghe597采纳,获得10
2秒前
花生壳发布了新的文献求助10
3秒前
3秒前
云然发布了新的文献求助10
4秒前
风中大楚给风中大楚的求助进行了留言
4秒前
李玲玲发布了新的文献求助10
5秒前
在水一方应助周文凯采纳,获得10
5秒前
李永涛发布了新的文献求助10
5秒前
6秒前
Dean应助蟒玉朝天采纳,获得60
8秒前
AHA完成签到,获得积分10
8秒前
谭茹茵发布了新的文献求助30
9秒前
9秒前
浮游应助花生壳采纳,获得10
9秒前
10秒前
EMC完成签到 ,获得积分10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
11秒前
无极微光应助科研通管家采纳,获得20
11秒前
慕青应助云然采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
11秒前
共享精神应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得30
12秒前
12秒前
田様应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得30
12秒前
浮游应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908652
求助须知:如何正确求助?哪些是违规求助? 4185172
关于积分的说明 12997027
捐赠科研通 3951974
什么是DOI,文献DOI怎么找? 2167233
邀请新用户注册赠送积分活动 1185712
关于科研通互助平台的介绍 1092321