分离器(采油)
电池(电)
锂(药物)
阴极
电化学
同步加速器
电解质
化学
机制(生物学)
材料科学
电极
物理
功率(物理)
光学
医学
物理化学
量子力学
热力学
内分泌学
作者
Yelena Gorlin,Manu U. M. Patel,Anna T.S. Freiberg,Qi He,Michele Piana,Moniek Tromp,Hubert A. Gasteiger
出处
期刊:Journal of The Electrochemical Society
[The Electrochemical Society]
日期:2016-01-01
卷期号:163 (6): A930-A939
被引量:123
摘要
Replacement of conventional cars with battery electric vehicles (BEVs) offers an opportunity to significantly reduce future carbon dioxide emissions. One possible way to facilitate widespread acceptance of BEVs is to replace the lithium-ion batteries used in existing BEVs with a lithium-sulfur battery, which operates using a cheap and abundant raw material with a high specific energy density. These significant theoretical advantages of lithium-sulfur batteries over the lithium-ion technology have generated a lot of interest in the system, but the development of practical prototypes, which could be successfully incorporated into BEVs, remains slow. To accelerate the development of improved lithium-sulfur batteries, our work focuses on the mechanistic understanding of the processes occurring inside the battery. In particular, we study the mechanism of the charging process and obtain spatially resolved information about both solution and solid phase intermediates in two locations of an operating Li2S-Li battery: the cathode and the separator. These measurements were made possible through the combination of a spectro-electrochemical cell developed in our laboratory and synchrotron based operando X-ray absorption spectroscopy measurements. Using the generated data, we identify a charging mechanism in a standard DOL-DME based electrolyte, which is consistent with both the first and subsequent charging processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI