数学优化
稳健性(进化)
计算机科学
电力系统
交流电源
经济调度
非线性系统
独特性
参数统计
功率(物理)
数学
统计
物理
基因
数学分析
量子力学
化学
生物化学
作者
Abhishek Rajan,Tanmoy Malakar
标识
DOI:10.1016/j.asoc.2016.02.041
摘要
In this paper, an exchange market algorithm (EMA) approach is applied to solve highly non-linear power system optimal reactive power dispatch (ORPD) problems. ORPD is most vital optimization problems in power system study and are usually devised as optimal power flow (OPF) problem. The problem is formulated as nonlinear, non-convex constrained optimization problem with the presence of both continuous and discrete control variables. The EMA searches for optimal solution via two main phases; namely, balanced market and oscillation market. Each of the phases comprises of both exploration and exploitation, which makes the algorithm unique. This uniqueness of EMA is exploited in this paper to solve various vital objectives associated with ORPD problems. Programs are developed in MATLAB and tested on standard IEEE 30 and IEEE 118 bus systems. The results obtained using EMA are compared with other contemporary methods in the literature. Simulation results demonstrate the superiority of EMA in terms of its computational efficiency and robustness. Consumed function evaluation for each case study is mentioned in the convergence plot itself for better clarity. Parametric study is also performed on different case studies to obtain the suitable values of tuneable parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI