Tensile and impact properties of microcellular isotactic polypropylene (PP) foams obtained by supercritical carbon dioxide

极限抗拉强度 材料科学 复合材料 聚丙烯 延伸率 超临界二氧化碳 变形(气象学) 艾氏冲击强度试验 模数 单元格大小 超临界流体 相对密度 微观结构 化学 有机化学 细胞生物学 生物
作者
Jin-Biao Bao,Alex Nyantakyi,Gengsheng Weng,Jia Wang,Yuwei Fang,Guo‐Hua Hu
出处
期刊:Journal of Supercritical Fluids [Elsevier]
卷期号:111: 63-73 被引量:116
标识
DOI:10.1016/j.supflu.2016.01.016
摘要

Microcellular isotactic polypropylene (PP) foams with various cell sizes (1–50 μm) and relative densities (0.86–0.04) were prepared using supercritical carbon dioxide (CO2) solid-state foaming to investigate the relationship between the cell morphologies and mechanical properties (tensile and impact). The tensile modulus of the PP foams decreased proportionally with the square of their relative densities and was always smaller than that of the un-foamed PP. Contrary to the tensile modulus, other properties, namely, tensile strength at break, elongation at break and impact strength of the PP foams, outperformed the un-foamed PP with margins that depended on the relative densities and cell sizes of the foams. PP foams with cell sizes less than 3 μm showed higher tensile strength at break than the un-foamed PP. During tensile deformation, cells stretched from circular shapes to elliptical ones. They collapsed or broke at very high deformation. Small cells (less than 3 μm) were found to significantly reduce the stress concentration under loading. Additionally, PP foams with cell sizes less than 10 μm showed higher elongation at break and impact strength compared with that of the un-foamed PP. During the impact, the cell size and cell density both decreased gradually along the impact direction. Furthermore, a plastic deformation zone occurred when the cell size was less than 10 μm, indicating that size reduction and collapse of cells could absorb a significant amount of impact energy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dipsy完成签到,获得积分10
刚刚
1秒前
英姑应助狂野觅云采纳,获得10
1秒前
晶晶妹妹完成签到,获得积分10
2秒前
黑妖完成签到,获得积分10
2秒前
2秒前
糊糊完成签到,获得积分10
2秒前
温婉的荷花完成签到,获得积分10
3秒前
3秒前
123发布了新的文献求助10
3秒前
4秒前
俭朴的明轩完成签到,获得积分20
4秒前
张童鞋完成签到 ,获得积分10
4秒前
4秒前
4秒前
Autoimmune发布了新的文献求助10
4秒前
帅气惜霜发布了新的文献求助10
5秒前
苏照杭应助Ll采纳,获得10
5秒前
LL完成签到 ,获得积分10
6秒前
后青春期的痘完成签到,获得积分10
6秒前
sun完成签到 ,获得积分10
7秒前
jiang完成签到 ,获得积分10
8秒前
8秒前
苏卿应助郑开司09采纳,获得10
8秒前
湖月照我影完成签到 ,获得积分10
8秒前
Orange应助龙歪歪采纳,获得10
8秒前
Jack发布了新的文献求助10
8秒前
9秒前
JACK发布了新的文献求助10
9秒前
卿欣完成签到 ,获得积分10
10秒前
莉莉发布了新的文献求助10
10秒前
红烧茄子完成签到,获得积分10
10秒前
默默柚子完成签到,获得积分10
10秒前
nini完成签到 ,获得积分10
10秒前
陶醉海露完成签到,获得积分10
11秒前
11秒前
苗槐完成签到,获得积分10
11秒前
阳光的沉鱼完成签到,获得积分10
11秒前
大模型应助白华苍松采纳,获得10
12秒前
zyp应助火焰向上采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762