Analyzing clinical trial outcomes based on incomplete daily diary reports

缺少数据 插补(统计学) 统计 计算机科学 辍学(神经网络) 标准误差 数据挖掘 数学 机器学习
作者
Neal Thomas,Ofer Harel,Roderick J. A. Little
出处
期刊:Statistics in Medicine [Wiley]
卷期号:35 (17): 2894-2906 被引量:7
标识
DOI:10.1002/sim.6890
摘要

A case study is presented assessing the impact of missing data on the analysis of daily diary data from a study evaluating the effect of a drug for the treatment of insomnia. The primary analysis averaged daily diary values for each patient into a weekly variable. Following the commonly used approach, missing daily values within a week were ignored provided there was a minimum number of diary reports (i.e., at least 4). A longitudinal model was then fit with treatment, time, and patient‐specific effects. A treatment effect at a pre‐specified landmark time was obtained from the model. Weekly values following dropout were regarded as missing, but intermittent daily missing values were obscured. Graphical summaries and tables are presented to characterize the complex missing data patterns. We use multiple imputation for daily diary data to create completed data sets so that exactly 7 daily diary values contribute to each weekly patient average. Standard analysis methods are then applied for landmark analysis of the completed data sets, and the resulting estimates are combined using the standard multiple imputation approach. The observed data are subject to digit heaping and patterned responses (e.g., identical values for several consecutive days), which makes accurate modeling of the response data difficult. Sensitivity analyses under different modeling assumptions for the data were performed, along with pattern mixture models assessing the sensitivity to the missing at random assumption. The emphasis is on graphical displays and computational methods that can be implemented with general‐purpose software. Copyright © 2016 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助felix采纳,获得10
刚刚
07发布了新的文献求助10
1秒前
科研通AI5应助123采纳,获得10
1秒前
liuran发布了新的文献求助10
2秒前
2秒前
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
2秒前
小蘑菇应助缺粥采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
liu应助flj7038采纳,获得20
3秒前
Akim应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
JamesOliver应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
九川应助科研通管家采纳,获得10
3秒前
36456657应助科研通管家采纳,获得10
3秒前
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
完美世界应助水牛采纳,获得10
4秒前
优等生完成签到,获得积分10
4秒前
英姑应助省人民医院采纳,获得10
5秒前
6秒前
顾矜应助务实思烟采纳,获得10
6秒前
十七完成签到,获得积分20
7秒前
crazy梁完成签到,获得积分10
8秒前
我能行完成签到,获得积分20
8秒前
10秒前
10秒前
隐形曼青应助011235813采纳,获得10
10秒前
10秒前
10秒前
silong发布了新的文献求助10
11秒前
crucible发布了新的文献求助10
11秒前
面包超人关注了科研通微信公众号
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552436
求助须知:如何正确求助?哪些是违规求助? 3128534
关于积分的说明 9378502
捐赠科研通 2827678
什么是DOI,文献DOI怎么找? 1554508
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714961