已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Preserving Word-Level Emphasis in Speech-to-Speech Translation

重点(电信) 计算机科学 副语言 话语 自然性 语音识别 抄写(语言学) 自然语言处理 条件随机场 人工智能 语音合成 语言学 电信 哲学 物理 量子力学
作者
Quoc Truong,Tomoki Toda,Graham Neubig,Sakriani Sakti,Satoshi Nakamura
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:25 (3): 544-556 被引量:19
标识
DOI:10.1109/taslp.2016.2643280
摘要

Speech-to-speech translation (S2ST) is a technology that translates speech across languages, which can remove barriers in cross-lingual communication. In the conventional S2ST systems, the linguistic meaning of speech was translated, but paralinguistic information conveying other features of the speech such as emotion or emphasis were ignored. In this paper, we propose a method to translate paralinguistic information, specifically focusing on emphasis. The method consists of a series of components that can accurately translate emphasis using all acoustic features of speech. First, linear-regression hidden semi-Markov models (LRHSMMs) are used to estimate a real-numbered emphasis value for every word in an utterance, resulting in a sequence of values for the utterance. After that the emphasis translation module translates the estimated emphasis sequence into a target language emphasis sequence using a conditional random field model considering the features of emphasis levels, words, and part-of-speech tags. Finally, the speech synthesis module synthesizes emphasized speech with LR-HSMMs, taking into account the translated emphasis sequence and transcription. The results indicate that our translation model can translate emphasis information, correctly emphasizing words in the target language with 91.6% F-measure by objective evaluation. A listening test with human subjects further showed that they could identify the emphasized words with 87.8% F-measure, and that the naturalness of the audio was preserved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
徐梦曦发布了新的文献求助10
2秒前
3秒前
4秒前
完美世界应助可研小冲采纳,获得10
5秒前
浮游应助超级万声采纳,获得10
5秒前
6秒前
CipherSage应助胜似闲庭信步采纳,获得10
6秒前
11秒前
欢呼的忘幽完成签到,获得积分10
12秒前
Hello应助HighFeng_Lei采纳,获得10
13秒前
16秒前
ok完成签到,获得积分10
16秒前
MrTStar完成签到 ,获得积分10
17秒前
17秒前
17秒前
18秒前
19秒前
浮游应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
orixero应助科研通管家采纳,获得10
19秒前
cherrychou完成签到,获得积分10
20秒前
我是老大应助科研通管家采纳,获得10
20秒前
20秒前
思源应助科研通管家采纳,获得10
20秒前
浮浮世世应助科研通管家采纳,获得30
20秒前
打打应助科研通管家采纳,获得10
21秒前
852应助科研通管家采纳,获得10
21秒前
烟花应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
浮浮世世应助科研通管家采纳,获得30
21秒前
21秒前
Ava应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
风中问晴发布了新的文献求助10
22秒前
迅速泽洋发布了新的文献求助10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422