Fate-mapping mice: new tools and technology for immune discovery

免疫系统 细胞命运测定 生物 命运图 背景(考古学) 计算生物学 免疫学 遗传学 胚胎干细胞 基因 转录因子 古生物学
作者
Scarlett E. Lee,Brian D. Rudd,Norah L. Smith
出处
期刊:Trends in Immunology [Elsevier]
卷期号:43 (3): 195-209 被引量:9
标识
DOI:10.1016/j.it.2022.01.004
摘要

Fate-mapping mice have revealed the developmental origins of multiple types of immune cells. When combined with technologies such as single cell RNA sequencing (scRNAseq), multiphoton imaging, and multiparameter flow cytometry, fate-mapping mice can define novel cell populations. When used in the context of infection and cancer, fate-mapping mice can both aid in understanding immune cell responses and help uncover new putative therapeutic targets that are unique to cells of specific developmental origins. Emerging fate-mapping models take advantage of newer genetic tools, such as cellular barcoding and stochastic multicolor reporters, thus allowing further resolution of the dynamics of immune cell populations in mice. The fate-mapping mouse has become an essential tool in the immunologist's toolbox. Although traditionally used by developmental biologists to trace the origins of cells, immunologists are turning to fate-mapping to better understand the development and function of immune cells. Thus, an expansion in the variety of fate-mapping mouse models has occurred to answer fundamental questions about the immune system. These models are also being combined with new genetic tools to study cancer, infection, and autoimmunity. In this review, we summarize different types of fate-mapping mice and describe emerging technologies that might allow immunologists to leverage this valuable tool and expand our functional knowledge of the immune system. The fate-mapping mouse has become an essential tool in the immunologist's toolbox. Although traditionally used by developmental biologists to trace the origins of cells, immunologists are turning to fate-mapping to better understand the development and function of immune cells. Thus, an expansion in the variety of fate-mapping mouse models has occurred to answer fundamental questions about the immune system. These models are also being combined with new genetic tools to study cancer, infection, and autoimmunity. In this review, we summarize different types of fate-mapping mice and describe emerging technologies that might allow immunologists to leverage this valuable tool and expand our functional knowledge of the immune system. self-cleaving peptide sequences placed between genes of interest; used to generate individual, instead of fusion proteins. tissue-clearing method for 3D imaging of entire organs without sectioning. biochemical process that B cells undergo to produce higher affinity antibodies. high-throughput sequencing technique assessing chromatin accessibility. translation of two genes from one mRNA transcript. mouse model in which the immune compartment is reconstituted with donor mouse stem cells. immunotherapeutic drug targeting immune regulators (checkpoints). immobilized cell arrays for single cell analysis. reporter mouse stochastically expressing different fluorescent proteins. bacteriophage P1-derived site-specific DNA recombinase. regulation of gene expression without changing DNA sequence. ER triple mutant with high specificity for tamoxifen. method used to study how the origin of cells influences their trajectory. technique that rapidly analyzes cells for parameters such as size, granularity, and protein expression. self-organized map algorithm used on flow cytometry data. flanked by two loxP sequences. marking unique identifiers with short DNA sequences. location within a lymphoid organ follicle where high-affinity antibodies are produced by B cells. molecular chaperone aiding in protein folding. NKT cell lymphoid population recognizing specific lipids. excitation occurs in a plane perpendicular to the observational direction. DNA sequence that is a target for Cre. computer systems that learn and adapt by using algorithms to analyze data patterns. fusion protein of Cre flanked by two modified ER-binding domains. innate-like T cell bearing an invariant T cell receptor. using near-infrared light to excite fluorescent molecules with 2+ photons to image deep into animal tissue while minimizing damage. gene region allowing genetic insertion without transgene silencing or dysregulation of neighboring genes; in this review, this is different from transcriptionally permissive. translation of multiple genes from a single mRNA transcript. system whereby Cre drives the generation of unique genetic barcodes. functional imaging technique using radioactive substances. dynamic analysis ordering cells along a lineage based on gene expression profiles. immunosuppressive CD4+ T cells. high-throughput sequencing analyzing transcriptional profiles. permissive gene locus for ubiquitous expression. sequencing method merging scRNAseq and live cell imaging. average number of times nucleotides are read in high-throughput sequencing. high-throughput sequencing analyzing transcriptional profiles of individual cells. CD4+ T cells that aid B cell maturation. CD4+ T cells producing interleukin (IL)-17. statistical method for visualizing high-dimensional data. dimension reduction algorithm for high parameter data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
异祺完成签到 ,获得积分10
5秒前
Handa完成签到,获得积分10
6秒前
栗栗完成签到,获得积分10
7秒前
昊天完成签到,获得积分10
7秒前
不配.应助辣椒采纳,获得10
7秒前
liwei完成签到,获得积分10
9秒前
10秒前
10秒前
zzz4743应助开心从露采纳,获得30
11秒前
jiangnan应助Lin采纳,获得10
14秒前
顾矜应助柒z采纳,获得10
14秒前
叶梓完成签到,获得积分10
15秒前
15秒前
科研通AI2S应助完美的海秋采纳,获得10
15秒前
16秒前
16秒前
17秒前
Lucas应助unlimit采纳,获得10
17秒前
liangchao发布了新的文献求助10
19秒前
19秒前
19秒前
酷波er应助小吴同志采纳,获得10
20秒前
希夷完成签到,获得积分10
20秒前
zzmm发布了新的文献求助30
23秒前
冯春妮发布了新的文献求助10
23秒前
好名字发布了新的文献求助10
23秒前
24秒前
24秒前
单纯的戒指完成签到 ,获得积分10
24秒前
25秒前
25秒前
liangchao完成签到,获得积分10
26秒前
小蘑菇应助津津采纳,获得10
27秒前
28秒前
su完成签到 ,获得积分10
28秒前
昊天发布了新的文献求助10
28秒前
29秒前
Khr1stINK发布了新的文献求助10
29秒前
30秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238011
求助须知:如何正确求助?哪些是违规求助? 2883339
关于积分的说明 8230220
捐赠科研通 2551474
什么是DOI,文献DOI怎么找? 1379952
科研通“疑难数据库(出版商)”最低求助积分说明 648908
邀请新用户注册赠送积分活动 624545