Fate-mapping mice: new tools and technology for immune discovery

免疫系统 细胞命运测定 生物 命运图 背景(考古学) 计算生物学 免疫学 遗传学 胚胎干细胞 基因 转录因子 古生物学
作者
Scarlett E. Lee,Brian D. Rudd,Norah L. Smith
出处
期刊:Trends in Immunology [Elsevier]
卷期号:43 (3): 195-209 被引量:9
标识
DOI:10.1016/j.it.2022.01.004
摘要

Fate-mapping mice have revealed the developmental origins of multiple types of immune cells. When combined with technologies such as single cell RNA sequencing (scRNAseq), multiphoton imaging, and multiparameter flow cytometry, fate-mapping mice can define novel cell populations. When used in the context of infection and cancer, fate-mapping mice can both aid in understanding immune cell responses and help uncover new putative therapeutic targets that are unique to cells of specific developmental origins. Emerging fate-mapping models take advantage of newer genetic tools, such as cellular barcoding and stochastic multicolor reporters, thus allowing further resolution of the dynamics of immune cell populations in mice. The fate-mapping mouse has become an essential tool in the immunologist's toolbox. Although traditionally used by developmental biologists to trace the origins of cells, immunologists are turning to fate-mapping to better understand the development and function of immune cells. Thus, an expansion in the variety of fate-mapping mouse models has occurred to answer fundamental questions about the immune system. These models are also being combined with new genetic tools to study cancer, infection, and autoimmunity. In this review, we summarize different types of fate-mapping mice and describe emerging technologies that might allow immunologists to leverage this valuable tool and expand our functional knowledge of the immune system. The fate-mapping mouse has become an essential tool in the immunologist's toolbox. Although traditionally used by developmental biologists to trace the origins of cells, immunologists are turning to fate-mapping to better understand the development and function of immune cells. Thus, an expansion in the variety of fate-mapping mouse models has occurred to answer fundamental questions about the immune system. These models are also being combined with new genetic tools to study cancer, infection, and autoimmunity. In this review, we summarize different types of fate-mapping mice and describe emerging technologies that might allow immunologists to leverage this valuable tool and expand our functional knowledge of the immune system. self-cleaving peptide sequences placed between genes of interest; used to generate individual, instead of fusion proteins. tissue-clearing method for 3D imaging of entire organs without sectioning. biochemical process that B cells undergo to produce higher affinity antibodies. high-throughput sequencing technique assessing chromatin accessibility. translation of two genes from one mRNA transcript. mouse model in which the immune compartment is reconstituted with donor mouse stem cells. immunotherapeutic drug targeting immune regulators (checkpoints). immobilized cell arrays for single cell analysis. reporter mouse stochastically expressing different fluorescent proteins. bacteriophage P1-derived site-specific DNA recombinase. regulation of gene expression without changing DNA sequence. ER triple mutant with high specificity for tamoxifen. method used to study how the origin of cells influences their trajectory. technique that rapidly analyzes cells for parameters such as size, granularity, and protein expression. self-organized map algorithm used on flow cytometry data. flanked by two loxP sequences. marking unique identifiers with short DNA sequences. location within a lymphoid organ follicle where high-affinity antibodies are produced by B cells. molecular chaperone aiding in protein folding. NKT cell lymphoid population recognizing specific lipids. excitation occurs in a plane perpendicular to the observational direction. DNA sequence that is a target for Cre. computer systems that learn and adapt by using algorithms to analyze data patterns. fusion protein of Cre flanked by two modified ER-binding domains. innate-like T cell bearing an invariant T cell receptor. using near-infrared light to excite fluorescent molecules with 2+ photons to image deep into animal tissue while minimizing damage. gene region allowing genetic insertion without transgene silencing or dysregulation of neighboring genes; in this review, this is different from transcriptionally permissive. translation of multiple genes from a single mRNA transcript. system whereby Cre drives the generation of unique genetic barcodes. functional imaging technique using radioactive substances. dynamic analysis ordering cells along a lineage based on gene expression profiles. immunosuppressive CD4+ T cells. high-throughput sequencing analyzing transcriptional profiles. permissive gene locus for ubiquitous expression. sequencing method merging scRNAseq and live cell imaging. average number of times nucleotides are read in high-throughput sequencing. high-throughput sequencing analyzing transcriptional profiles of individual cells. CD4+ T cells that aid B cell maturation. CD4+ T cells producing interleukin (IL)-17. statistical method for visualizing high-dimensional data. dimension reduction algorithm for high parameter data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YuF完成签到,获得积分10
1秒前
王智慧完成签到,获得积分10
2秒前
4秒前
长隆发布了新的文献求助10
4秒前
siso发布了新的文献求助50
5秒前
7秒前
9秒前
12秒前
小皮皮发布了新的文献求助10
14秒前
fgh完成签到 ,获得积分10
14秒前
16秒前
矮小的笑槐完成签到,获得积分10
17秒前
奈奈iii完成签到 ,获得积分10
22秒前
无花果应助科研通管家采纳,获得10
25秒前
25秒前
隐形曼青应助科研通管家采纳,获得10
25秒前
25秒前
Pzs应助科研通管家采纳,获得10
25秒前
30秒前
34秒前
36秒前
专注的小松鼠完成签到,获得积分10
39秒前
积极的小馒头应助lala采纳,获得10
40秒前
辞忧完成签到,获得积分10
40秒前
所所应助xieyuanlong采纳,获得10
42秒前
搞怪代桃完成签到 ,获得积分10
46秒前
傅双庆应助趙途嘵生采纳,获得10
46秒前
haohao发布了新的文献求助10
49秒前
52秒前
52秒前
123发布了新的文献求助10
52秒前
52秒前
56秒前
57秒前
57秒前
SciGPT应助一颗肉丸采纳,获得10
59秒前
Max_Black发布了新的文献求助10
1分钟前
藏识发布了新的文献求助200
1分钟前
1分钟前
1分钟前
高分求助中
LNG地上式貯槽指針 (JGA指 ; 108) 1000
LNG地下式貯槽指針(JGA指-107)(LNG underground storage tank guidelines) 1000
Generalized Linear Mixed Models 第二版 1000
Preparation and Characterization of Five Amino-Modified Hyper-Crosslinked Polymers and Performance Evaluation for Aged Transformer Oil Reclamation 700
Operative Techniques in Pediatric Orthopaedic Surgery 510
九经直音韵母研究 500
Full waveform acoustic data processing 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2927774
求助须知:如何正确求助?哪些是违规求助? 2577011
关于积分的说明 6955285
捐赠科研通 2227692
什么是DOI,文献DOI怎么找? 1184025
版权声明 589370
科研通“疑难数据库(出版商)”最低求助积分说明 579388