亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fate-mapping mice: new tools and technology for immune discovery

免疫系统 细胞命运测定 生物 命运图 背景(考古学) 计算生物学 免疫学 遗传学 胚胎干细胞 基因 转录因子 古生物学
作者
Scarlett E. Lee,Brian D. Rudd,Norah L. Smith
出处
期刊:Trends in Immunology [Elsevier BV]
卷期号:43 (3): 195-209 被引量:9
标识
DOI:10.1016/j.it.2022.01.004
摘要

Fate-mapping mice have revealed the developmental origins of multiple types of immune cells. When combined with technologies such as single cell RNA sequencing (scRNAseq), multiphoton imaging, and multiparameter flow cytometry, fate-mapping mice can define novel cell populations. When used in the context of infection and cancer, fate-mapping mice can both aid in understanding immune cell responses and help uncover new putative therapeutic targets that are unique to cells of specific developmental origins. Emerging fate-mapping models take advantage of newer genetic tools, such as cellular barcoding and stochastic multicolor reporters, thus allowing further resolution of the dynamics of immune cell populations in mice. The fate-mapping mouse has become an essential tool in the immunologist's toolbox. Although traditionally used by developmental biologists to trace the origins of cells, immunologists are turning to fate-mapping to better understand the development and function of immune cells. Thus, an expansion in the variety of fate-mapping mouse models has occurred to answer fundamental questions about the immune system. These models are also being combined with new genetic tools to study cancer, infection, and autoimmunity. In this review, we summarize different types of fate-mapping mice and describe emerging technologies that might allow immunologists to leverage this valuable tool and expand our functional knowledge of the immune system. The fate-mapping mouse has become an essential tool in the immunologist's toolbox. Although traditionally used by developmental biologists to trace the origins of cells, immunologists are turning to fate-mapping to better understand the development and function of immune cells. Thus, an expansion in the variety of fate-mapping mouse models has occurred to answer fundamental questions about the immune system. These models are also being combined with new genetic tools to study cancer, infection, and autoimmunity. In this review, we summarize different types of fate-mapping mice and describe emerging technologies that might allow immunologists to leverage this valuable tool and expand our functional knowledge of the immune system. self-cleaving peptide sequences placed between genes of interest; used to generate individual, instead of fusion proteins. tissue-clearing method for 3D imaging of entire organs without sectioning. biochemical process that B cells undergo to produce higher affinity antibodies. high-throughput sequencing technique assessing chromatin accessibility. translation of two genes from one mRNA transcript. mouse model in which the immune compartment is reconstituted with donor mouse stem cells. immunotherapeutic drug targeting immune regulators (checkpoints). immobilized cell arrays for single cell analysis. reporter mouse stochastically expressing different fluorescent proteins. bacteriophage P1-derived site-specific DNA recombinase. regulation of gene expression without changing DNA sequence. ER triple mutant with high specificity for tamoxifen. method used to study how the origin of cells influences their trajectory. technique that rapidly analyzes cells for parameters such as size, granularity, and protein expression. self-organized map algorithm used on flow cytometry data. flanked by two loxP sequences. marking unique identifiers with short DNA sequences. location within a lymphoid organ follicle where high-affinity antibodies are produced by B cells. molecular chaperone aiding in protein folding. NKT cell lymphoid population recognizing specific lipids. excitation occurs in a plane perpendicular to the observational direction. DNA sequence that is a target for Cre. computer systems that learn and adapt by using algorithms to analyze data patterns. fusion protein of Cre flanked by two modified ER-binding domains. innate-like T cell bearing an invariant T cell receptor. using near-infrared light to excite fluorescent molecules with 2+ photons to image deep into animal tissue while minimizing damage. gene region allowing genetic insertion without transgene silencing or dysregulation of neighboring genes; in this review, this is different from transcriptionally permissive. translation of multiple genes from a single mRNA transcript. system whereby Cre drives the generation of unique genetic barcodes. functional imaging technique using radioactive substances. dynamic analysis ordering cells along a lineage based on gene expression profiles. immunosuppressive CD4+ T cells. high-throughput sequencing analyzing transcriptional profiles. permissive gene locus for ubiquitous expression. sequencing method merging scRNAseq and live cell imaging. average number of times nucleotides are read in high-throughput sequencing. high-throughput sequencing analyzing transcriptional profiles of individual cells. CD4+ T cells that aid B cell maturation. CD4+ T cells producing interleukin (IL)-17. statistical method for visualizing high-dimensional data. dimension reduction algorithm for high parameter data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助BLESSING采纳,获得10
4秒前
汪鸡毛完成签到 ,获得积分10
12秒前
25秒前
25秒前
45秒前
美丽依波发布了新的文献求助10
48秒前
倪妮发布了新的文献求助30
50秒前
1分钟前
111发布了新的文献求助10
1分钟前
1分钟前
小二郎应助111采纳,获得10
1分钟前
倪妮发布了新的文献求助30
2分钟前
2分钟前
19900420完成签到 ,获得积分10
2分钟前
3分钟前
风趣的灵枫完成签到 ,获得积分10
3分钟前
3分钟前
倪妮发布了新的文献求助10
3分钟前
3分钟前
kimk发布了新的文献求助10
3分钟前
桥西小河完成签到 ,获得积分10
3分钟前
与水皆水发布了新的文献求助10
3分钟前
3分钟前
kimk完成签到,获得积分20
3分钟前
耍酷如柏完成签到,获得积分10
4分钟前
4分钟前
充电宝应助倪妮采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
科研通AI2S应助离雨采纳,获得10
5分钟前
5分钟前
倪妮发布了新的文献求助30
5分钟前
希望天下0贩的0应助葛力采纳,获得10
5分钟前
5分钟前
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
arte完成签到 ,获得积分10
6分钟前
欢呼若南发布了新的文献求助10
7分钟前
7分钟前
charliechen完成签到 ,获得积分10
7分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5104876
求助须知:如何正确求助?哪些是违规求助? 4314954
关于积分的说明 13443908
捐赠科研通 4143397
什么是DOI,文献DOI怎么找? 2270391
邀请新用户注册赠送积分活动 1272876
关于科研通互助平台的介绍 1209871