Discovering What Mattered: Answering Reverse Causal Questions by Detecting Unknown Treatment Assignment and Timing as Breaks in Panel Models

面板数据 计算机科学 计量经济学 Lasso(编程语言) 固定效应模型 因果模型 因果推理 经济 数学 统计 万维网
作者
Felix Pretis,M. Schwarz
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:4
标识
DOI:10.2139/ssrn.4022745
摘要

Much of empirical research focuses on forward causal questions (``Does X cause Y?'') while answering reverse causal questions (``What causes Y?'') can provide invaluable insights but is difficult to implement in practice. Here we operationalise the modelling of reverse causal questions through the detection of unknown treatment assignment and timing as structural breaks in fixed effects panel models. We show that conventional treatment evaluation of known interventions in a two-way fixed effects panel (often interpreted as difference-in-differences) is equivalent to allowing for heterogeneous structural breaks in the treated units' fixed effects. Using machine learning, we can thus detect previously unknown heterogeneous treatment effects as structural breaks in individual fixed effects corresponding to unit-specific treatment which can be subsequently attributed to potential causes. We demonstrate the feasibility of our approach by detecting the impact of ETA terrorism on Spanish regional GDP per capita without prior knowledge of its occurrence. Our proposed method to detect breaks in panel models can be readily implemented using our open-source R-package `gets' with the `getspanel' update or using the (adaptive) LASSO.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机器狗发布了新的文献求助10
2秒前
gong发布了新的文献求助20
3秒前
科研通AI6应助qjq采纳,获得10
3秒前
万能图书馆应助C14H10采纳,获得10
3秒前
NEW发布了新的文献求助10
5秒前
5秒前
哭泣乌完成签到,获得积分10
5秒前
Wenfeifei完成签到,获得积分20
6秒前
6秒前
大豹子发布了新的文献求助10
11秒前
科研通AI6应助Wenfeifei采纳,获得10
16秒前
16秒前
圆脸的空间啊完成签到,获得积分10
18秒前
dearcih完成签到,获得积分10
20秒前
23秒前
23秒前
Ava应助眯眯眼的裙子采纳,获得10
24秒前
壮观溪流发布了新的文献求助10
28秒前
素雅发布了新的文献求助10
29秒前
大豹子发布了新的文献求助10
30秒前
Jasper应助皞渺采纳,获得10
35秒前
开心远山完成签到,获得积分10
36秒前
干净的海云完成签到 ,获得积分10
36秒前
37秒前
BowieHuang应助mario采纳,获得10
40秒前
开心远山发布了新的文献求助10
41秒前
斯文天寿发布了新的文献求助30
42秒前
香蕉觅云应助皞渺采纳,获得10
42秒前
天天快乐应助素雅采纳,获得10
44秒前
英姑应助皞渺采纳,获得10
50秒前
JESI完成签到,获得积分10
52秒前
健壮易巧完成签到,获得积分10
53秒前
科研通AI6应助he采纳,获得10
54秒前
酷波er应助NEW采纳,获得10
57秒前
可爱的函函应助myg8627采纳,获得10
57秒前
Orange应助微笑的曼容采纳,获得10
57秒前
jesi完成签到,获得积分10
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558000
求助须知:如何正确求助?哪些是违规求助? 4642970
关于积分的说明 14669931
捐赠科研通 4584431
什么是DOI,文献DOI怎么找? 2514828
邀请新用户注册赠送积分活动 1489002
关于科研通互助平台的介绍 1459619