Nitrogen-rich Cu-MOF decorated on reduced graphene oxide nanosheets for hybrid supercapacitor applications with enhanced cycling stability

超级电容器 石墨烯 材料科学 复合数 氧化物 化学工程 电容 电极 电流密度 电化学 纳米技术 功率密度 复合材料 化学 冶金 量子力学 物理 工程类 物理化学 功率(物理)
作者
Sarathkumar Krishnan,Anoop K. Gupta,Mayank K. Singh,Nikita Guha,K. Dhirendra
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:435: 135042-135042 被引量:103
标识
DOI:10.1016/j.cej.2022.135042
摘要

High specific capacitance, enhanced power density, and high cyclic stability are the main requisites for a promising supercapacitor electrode material. This can be achieved by the combination of different active materials with a hierarchical structure. In this work, a highly biporous piperazine (N) functionalized Cu-MOF ({[Cu2(L)(H2O)2]·(3DMF)(4H2O)}n) (C) has been successfully anchored on chemically reduced graphene oxide (R) to fabricate a hybrid composite Cu-MOF/rGO (CR) by simple ultrasonication. Comparative electrochemical investigations reveal that, due to the synergistic effect of redox-active porous Cu-MOF and highly conductive rGO, the resulting composite exhibits excellent charge storage property with reduced charge transfer resistance compared to R and C. From the Galvanostatic Charge-Discharge (GCD) study, the calculated specific capacitance of the composite is found to be 867.09 F.g−1 at current density 1 A.g−1. The cyclic stability study suggests that the composite shows enhanced specific capacitance (131.65%) after 5000 cycles due to its electrochemical activation during repeated cycling. The kinetic study reveals the hybrid capacitive nature of the material, having major charge storage due to surface capacitance and a minor contribution from the diffusion capacitance resulting from its components R and C, respectively. Additionally, the fabricated hybrid symmetric supercapacitor (SSC) device exhibits a maximum energy density of 30.56 Wh.kg−1 at a power density of 0.6 kW.kg−1 and a maximum power density of 12 kW.kg−1 at 14.59 Wh.kg−1 energy density, with the capacity retention of 90.07% after 10,000 cycles. The robust and outstanding electrochemical performances of CR composite suggest it to be a promising electrode material for long cyclic life supercapacitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助跳跃的罡采纳,获得10
刚刚
丘比特应助跳跃的罡采纳,获得10
刚刚
刚刚
左手树完成签到,获得积分10
1秒前
1秒前
踏实的似狮完成签到,获得积分10
1秒前
正直画笔完成签到 ,获得积分10
1秒前
草履虫完成签到 ,获得积分10
2秒前
靓丽梦桃发布了新的文献求助10
2秒前
李创业发布了新的文献求助10
3秒前
炙热冰夏发布了新的文献求助10
3秒前
autobot1完成签到,获得积分10
3秒前
科研通AI5应助111采纳,获得10
3秒前
烟花应助Wang采纳,获得10
3秒前
曼尼发布了新的文献求助10
3秒前
赘婿应助桑姊采纳,获得10
5秒前
斯文败类应助Lvj采纳,获得10
5秒前
SYLH应助YHL采纳,获得10
5秒前
ranqi完成签到,获得积分10
5秒前
5秒前
6秒前
17808352679发布了新的文献求助10
6秒前
易生完成签到,获得积分10
7秒前
细腻曼冬完成签到 ,获得积分10
7秒前
7秒前
7秒前
9209完成签到 ,获得积分10
7秒前
8秒前
ranqi发布了新的文献求助10
8秒前
云落完成签到,获得积分10
8秒前
田様应助杨枝甘露樱桃采纳,获得10
8秒前
冲浪男孩226完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
10秒前
10秒前
现实的曼荷关注了科研通微信公众号
10秒前
10秒前
邓佳鑫Alan应助uniphoton采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762