A novel prognostic model for predicting the mortality risk of patients with sepsis-related acute respiratory failure: a cohort study using the MIMIC-IV database

医学 列线图 败血症 呼吸衰竭 内科学 机械通风 接收机工作特性 队列 比例危险模型 重症监护医学
作者
Lina Zhao,Jing Yang,Cong Zhou,Yunying Wang,Tao Liu
出处
期刊:Current Medical Research and Opinion [Informa]
卷期号:38 (4): 629-636 被引量:7
标识
DOI:10.1080/03007995.2022.2038490
摘要

Acute respiratory failure increases short-term mortality in sepsis patients. Hence, in this study, we aimed to develop a novel model for predicting the risk of hospital mortality in sepsis patients with acute respiratory failure.From the Medical Information Mart for Intensive Care (MIMIC)-IV database, we developed a matched cohort of adult sepsis patients with acute respiratory failure. After applying a multivariate COX regression analysis, we developed a nomogram based on the identified risk factors of mortality. Further, we evaluated the ability of the nomogram in predicting individual hospital death by the area under a receiver operating characteristic (ROC) curve.A total of 663 sepsis patients with acute respiratory failure were included in this study. Systolic blood pressure, neutrophil percentage, white blood cells count, mechanical ventilation, partial pressure of oxygen < 60 mmHg, abdominal cavity infection, Klebsiella pneumoniae and Acinetobacter baumannii infection, and immunosuppressive diseases were the independent risk factors of mortality in sepsis patients with acute respiratory failure. The area under the ROC curve of the nomogram was 0.880 (95% CI: 0.851-0.908), which provided significantly higher discrimination compared to that of the simplified acute physiology score II [0.656 (95% CI: 0.612-0.701)].The model shows a good performance in predicting the mortality risk of patients with sepsis-related acute respiratory failure. Hence, this model can be used to evaluate the short-term prognosis of critically ill patients with sepsis and acute respiratory failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zilong发布了新的文献求助10
刚刚
xueshudog完成签到,获得积分10
1秒前
Mercury发布了新的文献求助10
2秒前
暮霭沉沉应助fifteen采纳,获得10
2秒前
3秒前
4秒前
今后应助淡淡的尔白采纳,获得10
4秒前
5秒前
朴素千愁完成签到,获得积分10
6秒前
6秒前
xianyu完成签到,获得积分20
7秒前
简单寻冬完成签到,获得积分10
7秒前
张光光发布了新的文献求助10
9秒前
汤圆圆儿发布了新的文献求助10
10秒前
丘比特应助杜兰特工队采纳,获得10
11秒前
weirdo完成签到 ,获得积分10
11秒前
www发布了新的文献求助30
12秒前
12秒前
大个应助娜na采纳,获得10
13秒前
Orange应助xianyu采纳,获得10
14秒前
zhu97应助王的故乡采纳,获得20
14秒前
科研通AI2S应助violet采纳,获得10
14秒前
15秒前
16秒前
qinhan完成签到,获得积分10
17秒前
18秒前
淡淡的忆彤完成签到,获得积分10
18秒前
明芬发布了新的文献求助10
18秒前
xxxt完成签到,获得积分10
18秒前
20秒前
东东东完成签到,获得积分10
20秒前
张光光完成签到,获得积分10
20秒前
铁锤发布了新的文献求助10
21秒前
22秒前
无私的以冬完成签到,获得积分10
22秒前
22秒前
23秒前
甜蜜鞅发布了新的文献求助10
24秒前
25秒前
26秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157798
求助须知:如何正确求助?哪些是违规求助? 2809143
关于积分的说明 7880515
捐赠科研通 2467613
什么是DOI,文献DOI怎么找? 1313602
科研通“疑难数据库(出版商)”最低求助积分说明 630467
版权声明 601943