Data-Driven Optimization and Experimental Validation for the Lab-Scale Mono-Like Silicon Ingot Growth by Directional Solidification

材料科学 位错 定向凝固 结晶 瞬态(计算机编程) 过程(计算) 单晶硅 计算机科学 生物系统 冶金 复合材料 微观结构 热力学 物理 操作系统 合金 生物
作者
Xin Liu,Yifan Dang,Hiroyuki Tanaka,Yusuke Fukuda,Kentaro Kutsukake,Takahiko Kojima,Toru Ujihara,Noritaka Usami
出处
期刊:ACS omega [American Chemical Society]
卷期号:7 (8): 6665-6673 被引量:11
标识
DOI:10.1021/acsomega.1c06018
摘要

The casting mono-like silicon (Si) grown by directional solidification (DS) is promising for high-efficiency solar cells. However, high dislocation clusters around the top region are still the practical drawbacks, which limit its competitiveness to the monocrystalline Si. To optimize the DS-Si process, we applied the framework, which integrates the growing experiments, transient global simulations, artificial neuron network (ANN) training, and genetic algorithms (GAs). First, we grew the Si ingot by the original recipe and reproduced it with transient global modeling. Second, predictions of the Si ingot domain from different recipes were used to train the ANN, which acts as the instant predictor of ingot properties from specific recipes. Finally, the GA equipped with the predictor searched for the optimal recipe according to multi-objective combination, such as the lowest residual stress and dislocation density. We also implemented the optimal recipe in our mono-like DS-Si process for verification and comparison. According to the optimal recipe, we could reduce the dislocation density and smooth the growth rate during the Si ingot growing process. Comparisons of the growth interface and grain boundary evolutions showed the decrease of the interface concavity and the multi-crystallization in the top part of the ingot. The well-trained ANN combined with the GA could derive the optimal growth parameter combinations instantly and quantitatively for the multi-objective processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助152van采纳,获得10
刚刚
鲤鱼酸奶发布了新的文献求助20
1秒前
1秒前
科研通AI6应助杨紫宸采纳,获得10
1秒前
高兴断秋发布了新的文献求助10
2秒前
静待花开发布了新的文献求助10
2秒前
3秒前
一条纤维化的鱼完成签到,获得积分10
3秒前
文静的跳跳糖完成签到,获得积分10
3秒前
3秒前
3秒前
机智冬灵完成签到,获得积分10
4秒前
朱妙彤发布了新的文献求助10
4秒前
韩野发布了新的文献求助10
4秒前
5秒前
超级李包包完成签到,获得积分10
6秒前
7秒前
7秒前
科研通AI6应助zzq采纳,获得10
7秒前
7秒前
专虐白榨菜完成签到,获得积分10
8秒前
哈哈哈发布了新的文献求助10
8秒前
fwx1997发布了新的文献求助10
8秒前
可靠的寒风完成签到,获得积分10
8秒前
Jasper应助西瓜采纳,获得10
8秒前
9秒前
10秒前
10秒前
10秒前
科研通AI6应助三色采纳,获得10
10秒前
11秒前
11秒前
11秒前
隐形曼青应助哈哈哈采纳,获得10
11秒前
12秒前
sdysdbd完成签到 ,获得积分10
13秒前
共享精神应助wsqg123采纳,获得10
13秒前
13秒前
13秒前
芒狗发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625702
求助须知:如何正确求助?哪些是违规求助? 4711480
关于积分的说明 14955860
捐赠科研通 4779568
什么是DOI,文献DOI怎么找? 2553797
邀请新用户注册赠送积分活动 1515710
关于科研通互助平台的介绍 1475906