Research on Event Logic Knowledge Graph Construction Method of Robot Transmission System Fault Diagnosis

计算机科学 人工智能 理论计算机科学 数据挖掘 机器学习
作者
Jianfeng Deng,Tao Wang,Zhuowei Wang,Jiale Zhou,Lianglun Cheng
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 17656-17673 被引量:26
标识
DOI:10.1109/access.2022.3150409
摘要

Knowledge graph technology has important guiding significance for efficient and orderly fault diagnosis of robot transmission system. Taking the historical robot maintenance logs of robot transmission system as the research object, a top-down fault diagnosis event logic knowledge graph construction method is proposed. Firstly, we define event arguments of fault phenomenon and fault cause events, define event argument classes and relation between classes, and construct an event logic knowledge ontology model. According to the event logic knowledge ontology, the fault diagnosis event argument entity and relation in the corpus are labeled, and an event logic knowledge extraction dataset is formed. Secondly, an event argument entity and relation joint extraction model is proposed. Using stacked bidirectional long short-term memory(BiLSTM) to obtain deep context features of text. As a supplement to stacked BiLSTM, self-attention mechanism extracts character dependency features from multiple subspaces, and uses conditional random field(CRF) to realize entity recognition. The character dependency features are mapped to the entity label weight embedding, and spliced with deep context features to extract relations. Bidirectional graph convolutional network(BiGCN) is introduced for relation inference, graph convolution features are used to update deep context features to perform joint extraction in the second phase. Experimental results show that this method can improve the effect of event argument entity and relation joint extraction and is better than other methods. Finally, an event logic knowledge graph of robot transmission system fault diagnosis is constructed, which provides decision support for autonomous fault diagnosis of robot transmission system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
haixuWang发布了新的文献求助10
3秒前
3秒前
科研通AI2S应助hengwang采纳,获得10
4秒前
慕青应助hengwang采纳,获得10
4秒前
积极闭月完成签到,获得积分10
6秒前
ponny2001发布了新的文献求助10
7秒前
暴躁小李发布了新的文献求助10
8秒前
soyio完成签到,获得积分10
9秒前
haixuWang完成签到,获得积分10
11秒前
zhangxh应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
丰知然应助科研通管家采纳,获得10
12秒前
丰知然应助科研通管家采纳,获得10
13秒前
丰知然应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得30
13秒前
丰知然应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
Hello应助干净的天与采纳,获得10
13秒前
深情安青应助ponny2001采纳,获得10
13秒前
20秒前
小李在读研完成签到,获得积分10
21秒前
IP190237完成签到,获得积分10
23秒前
科研通AI2S应助lihongjie采纳,获得10
23秒前
李健的小迷弟应助卓梨采纳,获得10
27秒前
27秒前
完美世界应助爆米花采纳,获得10
29秒前
Owen应助科研糊涂神采纳,获得10
30秒前
31秒前
33秒前
Clarity完成签到,获得积分10
33秒前
34秒前
中和皇极应助qiu采纳,获得10
35秒前
CipherSage应助我需要文献采纳,获得10
36秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462689
求助须知:如何正确求助?哪些是违规求助? 3056214
关于积分的说明 9050947
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506601
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695693