Creating Knowledge Graph of Electric Power Equipment Faults Based on BERT–BiLSTM–CRF Model

计算机科学 知识图 编码器 人工智能 图形 知识表示与推理 条件随机场 变压器 自然语言处理 理论计算机科学 工程类 电气工程 操作系统 电压
作者
Fanqi Meng,Shuaisong Yang,Jingdong Wang,Lei Xia,Han Liu
出处
期刊:Journal of Electrical Engineering & Technology [Springer Nature]
卷期号:17 (4): 2507-2516 被引量:110
标识
DOI:10.1007/s42835-022-01032-3
摘要

Creating a large-scale knowledge graph of electric power equipment faults will facilitate the development of automatic fault diagnosis and intelligent question answering (QA) in the electric power industry. However, most existing methods have lower accuracy in Chinese entity recognition, thus it is hard to build such a high-quality knowledge graph by extracting knowledge from Chinese technical literature. To solve the problem, a novel model called BERT–BiLSTM–CRF is proposed. It blends Bi-directional Encoder Representation from Transformers (BERT), Bi-directional Long Short-Term Memory (BiLSTM), and Conditional Random Field (CRF). The model firstly identifies and extracts electric power equipment entities from pre-processed Chinese technical literature. Then, the semantic relations between the entities are extracted based on the relation classification method based on dependency parsing. Finally, the extracted knowledge is stored in the Neo4j database in the form of the triplet and visualized in the form of a graph. Through the above steps, a Chinese knowledge graph of electric power equipment faults can be built. The novelty of the model just lies in its subtle blend: the BERT module can not only learn phrase-level information representation, but also learn rich semantic information features; the CRF module realizes the constraint on the label prediction value and reduces the irregular recognition rate, so the accuracy rate of entity recognition is improved. Taking the Chinese technological literature, which is about fault diagnosis of electric power equipment as the experimental object, the experimental results show that the model identifies and extracts Chinese entities more accurately than traditional methods. Thus, a comprehensive and accurate Chinese knowledge graph of electric power equipment faults could be constructed more easily.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Dr.zhong发布了新的文献求助10
4秒前
之组长了完成签到 ,获得积分10
9秒前
Murphy_H发布了新的文献求助10
10秒前
123lx完成签到 ,获得积分10
11秒前
123456完成签到,获得积分10
11秒前
肖亚鑫完成签到,获得积分10
11秒前
可爱的函函应助章德仁采纳,获得10
11秒前
鲤鱼灵竹完成签到,获得积分10
12秒前
Owen应助zwy采纳,获得10
14秒前
肖亚鑫发布了新的文献求助10
14秒前
15秒前
李健的小迷弟应助zyt采纳,获得10
15秒前
16秒前
鲤鱼灵竹发布了新的文献求助10
17秒前
WilliamYen关注了科研通微信公众号
17秒前
18秒前
21秒前
23秒前
Li发布了新的文献求助10
24秒前
yezilin完成签到,获得积分10
26秒前
Hao发布了新的文献求助10
26秒前
自信的坤完成签到,获得积分10
27秒前
27秒前
车访枫完成签到,获得积分10
28秒前
29秒前
香蕉觅云应助车访枫采纳,获得10
32秒前
33秒前
Akim应助鲤鱼灵竹采纳,获得10
34秒前
额我认为发布了新的文献求助10
35秒前
rayzhanghl完成签到,获得积分10
35秒前
37秒前
胡巴发布了新的文献求助10
37秒前
Sean发布了新的文献求助10
37秒前
Ll完成签到,获得积分10
38秒前
zyt完成签到,获得积分10
38秒前
38秒前
在学一会发布了新的文献求助10
39秒前
ok发布了新的文献求助10
40秒前
细腻的语芙完成签到,获得积分20
41秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343625
求助须知:如何正确求助?哪些是违规求助? 2970630
关于积分的说明 8644716
捐赠科研通 2650766
什么是DOI,文献DOI怎么找? 1451444
科研通“疑难数据库(出版商)”最低求助积分说明 672137
邀请新用户注册赠送积分活动 661569