Creating Knowledge Graph of Electric Power Equipment Faults Based on BERT–BiLSTM–CRF Model

计算机科学 知识图 编码器 人工智能 图形 知识表示与推理 条件随机场 变压器 自然语言处理 理论计算机科学 工程类 电气工程 操作系统 电压
作者
Fanqi Meng,Shuaisong Yang,Jingdong Wang,Lei Xia,Han Liu
出处
期刊:Journal of Electrical Engineering & Technology [Springer Science+Business Media]
卷期号:17 (4): 2507-2516 被引量:125
标识
DOI:10.1007/s42835-022-01032-3
摘要

Creating a large-scale knowledge graph of electric power equipment faults will facilitate the development of automatic fault diagnosis and intelligent question answering (QA) in the electric power industry. However, most existing methods have lower accuracy in Chinese entity recognition, thus it is hard to build such a high-quality knowledge graph by extracting knowledge from Chinese technical literature. To solve the problem, a novel model called BERT–BiLSTM–CRF is proposed. It blends Bi-directional Encoder Representation from Transformers (BERT), Bi-directional Long Short-Term Memory (BiLSTM), and Conditional Random Field (CRF). The model firstly identifies and extracts electric power equipment entities from pre-processed Chinese technical literature. Then, the semantic relations between the entities are extracted based on the relation classification method based on dependency parsing. Finally, the extracted knowledge is stored in the Neo4j database in the form of the triplet and visualized in the form of a graph. Through the above steps, a Chinese knowledge graph of electric power equipment faults can be built. The novelty of the model just lies in its subtle blend: the BERT module can not only learn phrase-level information representation, but also learn rich semantic information features; the CRF module realizes the constraint on the label prediction value and reduces the irregular recognition rate, so the accuracy rate of entity recognition is improved. Taking the Chinese technological literature, which is about fault diagnosis of electric power equipment as the experimental object, the experimental results show that the model identifies and extracts Chinese entities more accurately than traditional methods. Thus, a comprehensive and accurate Chinese knowledge graph of electric power equipment faults could be constructed more easily.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定从凝发布了新的文献求助10
刚刚
曾建发布了新的文献求助20
2秒前
小滨发布了新的文献求助10
3秒前
ccchen发布了新的文献求助10
3秒前
wangjue发布了新的文献求助10
5秒前
dinhogj完成签到,获得积分10
7秒前
8秒前
9秒前
qy97发布了新的文献求助10
11秒前
武广敏完成签到,获得积分10
11秒前
刘_Young发布了新的文献求助10
13秒前
奇怪人类发布了新的文献求助10
13秒前
完美世界应助网球采纳,获得10
16秒前
Yolo应助郑金昕采纳,获得10
16秒前
Rondab应助wang采纳,获得10
16秒前
16秒前
今后应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得10
17秒前
奥特超曼应助科研通管家采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得10
17秒前
从容芮应助科研通管家采纳,获得50
17秒前
ED应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得10
18秒前
8R60d8应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
21秒前
yangyilin完成签到,获得积分10
23秒前
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993930
求助须知:如何正确求助?哪些是违规求助? 3534527
关于积分的说明 11265807
捐赠科研通 3274431
什么是DOI,文献DOI怎么找? 1806358
邀请新用户注册赠送积分活动 883211
科研通“疑难数据库(出版商)”最低求助积分说明 809712