Sample-Centric Feature Generation for Semi-Supervised Few-Shot Learning

人工智能 模式识别(心理学) 计算机科学 特征(语言学) 离群值 样品(材料) 公制(单位) 一般化 特征提取 发电机(电路理论) 监督学习 机器学习 数据挖掘 数学 人工神经网络 哲学 数学分析 物理 经济 功率(物理) 量子力学 化学 色谱法 语言学 运营管理
作者
Bo Zhang,Hancheng Ye,Gang Yu,Bin Wang,Yike Wu,Jiayuan Fan,Tao Chen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 2309-2320 被引量:19
标识
DOI:10.1109/tip.2022.3154938
摘要

Semi-supervised few-shot learning aims to improve the model generalization ability by means of both limited labeled data and widely-available unlabeled data. Previous works attempt to model the relations between the few-shot labeled data and extra unlabeled data, by performing a label propagation or pseudo-labeling process using an episodic training strategy. However, the feature distribution represented by the pseudo-labeled data itself is coarse-grained, meaning that there might be a large distribution gap between the pseudo-labeled data and the real query data. To this end, we propose a sample-centric feature generation (SFG) approach for semi-supervised few-shot image classification. Specifically, the few-shot labeled samples from different classes are initially trained to predict pseudo-labels for the potential unlabeled samples. Next, a semi-supervised meta-generator is utilized to produce derivative features centering around each pseudo-labeled sample, enriching the intra-class feature diversity. Meanwhile, the sample-centric generation constrains the generated features to be compact and close to the pseudo-labeled sample, ensuring the inter-class feature discriminability. Further, a reliability assessment (RA) metric is developed to weaken the influence of generated outliers on model learning. Extensive experiments validate the effectiveness of the proposed feature generation approach on challenging one- and few-shot image classification benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顺心的飞飞应助不要碧莲采纳,获得10
1秒前
1秒前
1秒前
蓝桉完成签到,获得积分20
1秒前
wanci应助西米采纳,获得10
1秒前
柯米克发布了新的文献求助10
2秒前
猪猪hero应助嘴巴张大一点采纳,获得10
2秒前
李健应助怎么忘了采纳,获得100
3秒前
4秒前
lan发布了新的文献求助30
4秒前
早睡早起不秃头完成签到,获得积分10
5秒前
完美世界应助张火火采纳,获得10
6秒前
6秒前
俊秀的跳跳糖完成签到,获得积分20
7秒前
7秒前
所所应助kk采纳,获得10
7秒前
7秒前
8秒前
小二郎应助木子采纳,获得10
8秒前
9秒前
9秒前
9秒前
NexusExplorer应助忧伤的丁丁采纳,获得10
9秒前
11秒前
研友_LN3xyn完成签到,获得积分10
11秒前
jochimchan发布了新的文献求助10
13秒前
西米发布了新的文献求助10
13秒前
NexusExplorer应助kk采纳,获得10
13秒前
852应助dandelionshun采纳,获得10
14秒前
在水一方应助傲娇的觅翠采纳,获得10
14秒前
14秒前
英勇的老头完成签到,获得积分10
14秒前
Aurora.H发布了新的文献求助10
15秒前
CipherSage应助柯米克采纳,获得10
15秒前
杨沛儒发布了新的文献求助10
15秒前
ali8ba发布了新的文献求助10
17秒前
jochimchan完成签到,获得积分10
17秒前
19秒前
852应助洁净的钢铁侠采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502770
关于积分的说明 11110029
捐赠科研通 3233693
什么是DOI,文献DOI怎么找? 1787452
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152