Deep reinforcement learning based active safety control for distributed drive electric vehicles

强化学习 力矩(物理) 控制理论(社会学) 理论(学习稳定性) 马尔可夫决策过程 过程(计算) 计算机科学 工程类 非线性系统 控制工程 马尔可夫过程 人工智能 控制(管理) 机器学习 数学 统计 经典力学 操作系统 量子力学 物理
作者
Hongqian Wei,Wenqiang Zhao,Qiang Ai,Youtong Zhang,Tianyi Huang
出处
期刊:Iet Intelligent Transport Systems [Institution of Electrical Engineers]
卷期号:16 (6): 813-824 被引量:5
标识
DOI:10.1049/itr2.12176
摘要

Distributed drive electric vehicles are regarded as the promising transportation due to the advanced power flow architecture. Optimizing the yaw motion to enhance vehicle safety is a challenging job. Besides, the nonlinear features in vehicles affect the control accuracy of the yaw motion controllers. To this end, a deep reinforcement learning (DRL) based direct yaw moment control (DYC) strategy is put forward here. Vehicle dynamics can be approximated with the DRL algorithm, which reduces the complex nonlinear solving process. Concretely, the DYC problem is formulated as Markov Decision Process in which the observed signals and external yaw moment are incorporated as the state and action sets. Thereupon, actor-critic network is exhibited to approximate action-value function and policy function for better control performance. Furthermore, to guarantee the continuous solution of external yaw moment, the deep deterministic policy gradient algorithm is employed, in which target and online network parameters are simultaneously trained to maintain learning process stability. The proposed DRL based DYC strategy is verified using the Carsim/Simulink platform under the typical lane change manoeuvres. Numerical test results demonstrate that the proposed DYC strategy outperforms the linear approaches on taking full advantage of understeer features and enhancing the lateral stability, especially under the critical steering manoeuvres.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白宝宝北北白应助氕氘氚采纳,获得10
刚刚
1秒前
进取拼搏完成签到,获得积分10
1秒前
hehsk完成签到,获得积分10
1秒前
无限鞅完成签到,获得积分20
1秒前
2秒前
DY完成签到 ,获得积分10
3秒前
郑仕完成签到,获得积分10
3秒前
3秒前
进取拼搏发布了新的文献求助10
4秒前
顺顺发布了新的文献求助10
4秒前
4秒前
在水一方应助涛涛采纳,获得10
4秒前
英姑应助义气的傲松采纳,获得10
5秒前
5秒前
哭泣蛋挞完成签到 ,获得积分10
6秒前
sweetbearm应助通~采纳,获得10
6秒前
田様应助吃饭用大碗采纳,获得10
7秒前
7秒前
8秒前
9秒前
阿斯蒂和琴酒完成签到 ,获得积分10
9秒前
珂珂发布了新的文献求助10
11秒前
11秒前
迟大猫应助我是站长才怪采纳,获得30
11秒前
12秒前
BaekHyun发布了新的文献求助10
12秒前
背后翠梅发布了新的文献求助30
12秒前
CCR发布了新的文献求助10
12秒前
su发布了新的文献求助10
14秒前
善学以致用应助钰c采纳,获得10
14秒前
Fundamental完成签到,获得积分20
15秒前
通~发布了新的文献求助10
15秒前
Akim应助阿屁屁猪采纳,获得10
15秒前
16秒前
细雨听风发布了新的文献求助10
16秒前
16秒前
英俊的小松鼠完成签到,获得积分10
16秒前
17秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808