已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Nomogram predicting bullying victimization in adolescents

逻辑回归 列线图 接收机工作特性 毒物控制 过度拟合 伤害预防 心理学 医学 统计 机器学习 计算机科学 环境卫生 数学 人工神经网络 内科学
作者
Jianping Lv,Hui Ren,Xinmeng Guo,Cuicui Meng,Junsong Fei,Hechen Mei,Songli Mei
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:303: 264-272 被引量:33
标识
DOI:10.1016/j.jad.2022.02.037
摘要

Objective: The purpose of this study was to construct a cross-sectional study to predict the risk of bullying victimization among adolescents. Methods: The study recruited 17,365 Chinese adolescents using stratified random cluster sampling method. The classical regression methods (logistic regression and Lasso regression) and machine learning model were combined to identify the most significant predictors of bullying victimization. Nomogram was built based on multivariable logistic regression model. The discrimination, calibration and generalization of nomogram were evaluated by the receiver operating characteristic curves (ROC), the calibration curve and a high-quality external validation. Results: Grade, gender, peer violence, family violence, body mass index, family structure, depressive symptoms and Internet addiction, recognized as the best combination, were included in the multivariable regression. The nomogram established based on the non-overfitting multivariable model was verified by internal validation (Area Under Curve: 0.749) and external validation (Area Under Curve: 0.755), showing decent prediction of discrimination, calibration and generalization. Conclusion: Comprehensive nomogram constructed in this study was a useful and convenient tool to evaluate the risk of bullying victimization of adolescents. It is helpful for health-care professionals to assess the risk of bullying victimization among adolescents, and to identify high-risk groups and take more effective preventive measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
无名子完成签到 ,获得积分10
1秒前
1秒前
hadron完成签到,获得积分10
1秒前
科目三应助Darcy采纳,获得10
1秒前
2秒前
2秒前
3秒前
3秒前
kentonchow应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
ccm应助科研通管家采纳,获得10
3秒前
冷静新烟发布了新的文献求助10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
美好斓应助科研通管家采纳,获得100
3秒前
诚心寄松应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
3秒前
hfg完成签到 ,获得积分10
5秒前
ioioio完成签到,获得积分10
5秒前
5秒前
lllkkk发布了新的文献求助10
6秒前
6秒前
冷傲之玉发布了新的文献求助10
7秒前
7秒前
GT发布了新的文献求助10
7秒前
retosure发布了新的文献求助10
8秒前
shabiquyidan发布了新的文献求助10
8秒前
芝心鱼丸发布了新的文献求助10
11秒前
Akim应助ARVIN采纳,获得10
11秒前
12秒前
杨武天一发布了新的文献求助10
12秒前
Heisnn发布了新的文献求助10
12秒前
为什么我不说帅哥j完成签到,获得积分10
12秒前
Jeff发布了新的文献求助10
12秒前
13秒前
粥粥sqk发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400986
求助须知:如何正确求助?哪些是违规求助? 4520031
关于积分的说明 14077904
捐赠科研通 4432951
什么是DOI,文献DOI怎么找? 2433919
邀请新用户注册赠送积分活动 1426111
关于科研通互助平台的介绍 1404733