已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A review on vision-based analysis for automatic dietary assessment

计算机科学 人工智能 深度学习 范围(计算机科学) 水准点(测量) 营养不良 比例(比率) 数据科学 机器学习 风险分析(工程) 医学 病理 物理 程序设计语言 地理 量子力学 大地测量学
作者
Wei Wang,Weiqing Min,Tianhao Li,Xiaoxiao Dong,Haisheng Li,Shuqiang Jiang
出处
期刊:Trends in Food Science and Technology [Elsevier]
卷期号:122: 223-237 被引量:56
标识
DOI:10.1016/j.tifs.2022.02.017
摘要

Background: Maintaining a healthy diet is vital to avoid health-related issues, e.g., undernutrition, obesity and many non-communicable diseases. An indispensable part of the health diet is dietary assessment. Traditional manual recording methods are not only burdensome but time-consuming, and contain substantial biases and errors. Recent advances in Artificial Intelligence (AI), especially computer vision technologies, have made it possible to develop automatic dietary assessment solutions, which are more convenient, less time-consuming and even more accurate to monitor daily food intake. Scope and approach: This review presents Vision-Based Dietary Assessment (VBDA) architectures, including multi-stage architecture and end-to-end one. The multi-stage dietary assessment generally consists of three stages: food image analysis, volume estimation and nutrient derivation. The prosperity of deep learning makes VBDA gradually move to an end-to-end implementation, which applies food images to a single network to directly estimate the nutrition. The recently proposed end-to-end methods are also discussed. We further analyze existing dietary assessment datasets, indicating that one large-scale benchmark is urgently needed, and finally highlight critical challenges and future trends for VBDA. Key findings and conclusions: After thorough exploration, we find that multi-task end-to-end deep learning approaches are one important trend of VBDA. Despite considerable research progress, many challenges remain for VBDA due to the meal complexity. We also provide the latest ideas for future development of VBDA, e.g., fine-grained food analysis and accurate volume estimation. This review aims to encourage researchers to propose more practical solutions for VBDA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc发布了新的文献求助10
1秒前
科研通AI5应助xq采纳,获得10
1秒前
666发布了新的文献求助10
1秒前
NI完成签到 ,获得积分10
2秒前
241222013发布了新的文献求助10
2秒前
搜集达人应助王羿采纳,获得10
3秒前
乐乐应助缥缈的紫青采纳,获得10
3秒前
欢喜完成签到 ,获得积分20
3秒前
幽壑之潜蛟应助墨菲特采纳,获得10
5秒前
11秒前
科研通AI5应助666采纳,获得10
12秒前
努努完成签到 ,获得积分10
12秒前
学者完成签到,获得积分10
14秒前
14秒前
15秒前
Dr发布了新的文献求助10
16秒前
科研通AI5应助刘子超采纳,获得10
17秒前
19秒前
19秒前
风趣的白山完成签到 ,获得积分10
19秒前
19秒前
科研通AI2S应助Dr采纳,获得10
20秒前
明理语儿关注了科研通微信公众号
20秒前
头孢西丁发布了新的文献求助10
20秒前
欢呼的鲂完成签到,获得积分10
21秒前
KRR发布了新的文献求助10
21秒前
小蘑菇应助C3ASER采纳,获得10
22秒前
上官若男应助墨菲特采纳,获得10
22秒前
j_发布了新的文献求助10
23秒前
26秒前
桐桐应助9℃采纳,获得10
26秒前
在水一方应助臧臧采纳,获得10
27秒前
王富贵完成签到,获得积分10
28秒前
33秒前
白日幻想家完成签到 ,获得积分10
35秒前
方知有完成签到,获得积分10
35秒前
36秒前
共享精神应助科研通管家采纳,获得10
36秒前
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3574789
求助须知:如何正确求助?哪些是违规求助? 3144698
关于积分的说明 9457053
捐赠科研通 2845998
什么是DOI,文献DOI怎么找? 1564665
邀请新用户注册赠送积分活动 732433
科研通“疑难数据库(出版商)”最低求助积分说明 719110