Fault diagnosis of power grid based on variational mode decomposition and convolutional neural network

Softmax函数 断层(地质) 陷入故障 故障指示器 卷积神经网络 人工神经网络 继电器 计算机科学 电力系统 模式识别(心理学) 希尔伯特变换 算法 功率(物理) 人工智能 工程类 故障检测与隔离 光谱密度 物理 量子力学 地震学 执行机构 地质学 电信
作者
Qian Zhang,Wenhao Ma,Guoli Li,Jinjin Ding,Min Xie
出处
期刊:Electric Power Systems Research [Elsevier BV]
卷期号:208: 107871-107871 被引量:47
标识
DOI:10.1016/j.epsr.2022.107871
摘要

The distribution network has complex topological structure and many branches. So, the fault location is easy to be wrongly located. Therefore, a novel hybrid method of combining variational mode decomposition (VMD) and convolutional neural network (CNN) for fault location and fault type identification is proposed in power grid. A fault feature extraction method based on VMD and Hilbert-Huang transform (HHT) is designed. In this method, the VMD is used to analyze the characteristic features from fault transient signals of the positive sequence current. The fault features of the intrinsic mode function with more fault features are extracted through HHT. The extracted fault feature vector is used as the input of CNN to build fault diagnosis model. Finally, the fault diagnosis report is obtained by comparing and analyzing the output results of SoftMax layer. The experimental results show that this method can identify the fault location and type in the small current grounding power system model of relay protection dynamic simulation equipment. Meanwhile, the method is less influenced by fault resistance and fault distance and has good accuracy, thus having better accuracy and generalization ability than traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旺仔同学完成签到,获得积分10
5秒前
吉以寒完成签到,获得积分10
11秒前
科研老兵完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
16秒前
fys131415完成签到 ,获得积分10
31秒前
执着的忆雪完成签到 ,获得积分10
34秒前
36秒前
闵不悔完成签到,获得积分10
48秒前
阳光火车完成签到 ,获得积分10
49秒前
cc完成签到,获得积分10
52秒前
合适的寄灵完成签到 ,获得积分10
53秒前
量子星尘发布了新的文献求助10
54秒前
科研通AI5应助cc采纳,获得10
55秒前
铜泰妍完成签到 ,获得积分10
56秒前
贝贝完成签到 ,获得积分10
1分钟前
Lrcx完成签到 ,获得积分10
1分钟前
Wen完成签到 ,获得积分10
1分钟前
盘尼西林完成签到 ,获得积分10
1分钟前
LOVE0077完成签到,获得积分10
1分钟前
zhao完成签到,获得积分10
1分钟前
BINBIN完成签到 ,获得积分10
1分钟前
ambrose37完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
fufufu123完成签到 ,获得积分10
1分钟前
开心的大娘完成签到,获得积分10
1分钟前
www完成签到 ,获得积分10
1分钟前
末末完成签到 ,获得积分10
1分钟前
无为完成签到 ,获得积分10
1分钟前
白嫖论文完成签到 ,获得积分10
1分钟前
上官若男应助忧伤的步美采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
从心随缘完成签到 ,获得积分10
1分钟前
花花发布了新的文献求助10
1分钟前
牛奶面包完成签到 ,获得积分10
1分钟前
1分钟前
岁月如歌完成签到 ,获得积分0
1分钟前
2分钟前
Li完成签到,获得积分10
2分钟前
张琨完成签到 ,获得积分10
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022