Fault diagnosis of power grid based on variational mode decomposition and convolutional neural network

Softmax函数 断层(地质) 陷入故障 故障指示器 卷积神经网络 人工神经网络 继电器 计算机科学 电力系统 模式识别(心理学) 希尔伯特变换 算法 功率(物理) 人工智能 工程类 故障检测与隔离 光谱密度 物理 量子力学 地震学 执行机构 地质学 电信
作者
Qian Zhang,Wenhao Ma,Guoli Li,Jinjin Ding,Min Xie
出处
期刊:Electric Power Systems Research [Elsevier BV]
卷期号:208: 107871-107871 被引量:47
标识
DOI:10.1016/j.epsr.2022.107871
摘要

The distribution network has complex topological structure and many branches. So, the fault location is easy to be wrongly located. Therefore, a novel hybrid method of combining variational mode decomposition (VMD) and convolutional neural network (CNN) for fault location and fault type identification is proposed in power grid. A fault feature extraction method based on VMD and Hilbert-Huang transform (HHT) is designed. In this method, the VMD is used to analyze the characteristic features from fault transient signals of the positive sequence current. The fault features of the intrinsic mode function with more fault features are extracted through HHT. The extracted fault feature vector is used as the input of CNN to build fault diagnosis model. Finally, the fault diagnosis report is obtained by comparing and analyzing the output results of SoftMax layer. The experimental results show that this method can identify the fault location and type in the small current grounding power system model of relay protection dynamic simulation equipment. Meanwhile, the method is less influenced by fault resistance and fault distance and has good accuracy, thus having better accuracy and generalization ability than traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ali应助史念薇采纳,获得10
2秒前
4秒前
海城好人完成签到,获得积分10
4秒前
5秒前
默默完成签到,获得积分10
5秒前
维尼完成签到,获得积分20
5秒前
7秒前
文档发布了新的文献求助10
8秒前
8秒前
科目三应助Loik采纳,获得10
9秒前
10秒前
10秒前
12秒前
12秒前
果粒多发布了新的文献求助10
13秒前
15秒前
17秒前
李泽雄完成签到,获得积分10
18秒前
gsq发布了新的文献求助30
18秒前
momo发布了新的文献求助10
18秒前
wdy111应助学习鱼采纳,获得20
20秒前
20秒前
G哟X完成签到 ,获得积分10
21秒前
22秒前
科目三应助Zz采纳,获得10
23秒前
24秒前
zzzjh驳回了李健应助
24秒前
脑洞疼应助暴躁小龙采纳,获得10
26秒前
笑点低方盒完成签到,获得积分10
27秒前
归尘发布了新的文献求助10
27秒前
传奇3应助momo采纳,获得10
27秒前
28秒前
胡图图发布了新的文献求助10
29秒前
31秒前
蜜HHH完成签到 ,获得积分10
32秒前
33秒前
33秒前
我要文献发布了新的文献求助10
34秒前
34秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158