已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multitask Learning Radiomics on Longitudinal Imaging to Predict Survival Outcomes following Risk-Adaptive Chemoradiation for Non-Small Cell Lung Cancer

无线电技术 医学 人工智能 肿瘤科 机器学习 放射科
作者
Parisa Forouzannezhad,Dominic Maes,Daniel S. Hippe,Phawis Thammasorn,Reza Iranzad,Jie Han,Chunyan Duan,Xiao Liu,Shouyi Wang,W. Art Chaovalitwongse,Jing Zeng,Stephen R. Bowen
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:14 (5): 1228-1228
标识
DOI:10.3390/cancers14051228
摘要

(1) Background: Medical imaging provides quantitative and spatial information to evaluate treatment response in the management of patients with non-small cell lung cancer (NSCLC). High throughput extraction of radiomic features on these images can potentially phenotype tumors non-invasively and support risk stratification based on survival outcome prediction. The prognostic value of radiomics from different imaging modalities and time points prior to and during chemoradiation therapy of NSCLC, relative to conventional imaging biomarker or delta radiomics models, remains uncharacterized. We investigated the utility of multitask learning of multi-time point radiomic features, as opposed to single-task learning, for improving survival outcome prediction relative to conventional clinical imaging feature model benchmarks. (2) Methods: Survival outcomes were prospectively collected for 45 patients with unresectable NSCLC enrolled on the FLARE-RT phase II trial of risk-adaptive chemoradiation and optional consolidation PD-L1 checkpoint blockade (NCT02773238). FDG-PET, CT, and perfusion SPECT imaging pretreatment and week 3 mid-treatment was performed and 110 IBSI-compliant pyradiomics shape-/intensity-/texture-based features from the metabolic tumor volume were extracted. Outcome modeling consisted of a fused Laplacian sparse group LASSO with component-wise gradient boosting survival regression in a multitask learning framework. Testing performance under stratified 10-fold cross-validation was evaluated for multitask learning radiomics of different imaging modalities and time points. Multitask learning models were benchmarked against conventional clinical imaging and delta radiomics models and evaluated with the concordance index (c-index) and index of prediction accuracy (IPA). (3) Results: FDG-PET radiomics had higher prognostic value for overall survival in test folds (c-index 0.71 [0.67, 0.75]) than CT radiomics (c-index 0.64 [0.60, 0.71]) or perfusion SPECT radiomics (c-index 0.60 [0.57, 0.63]). Multitask learning of pre-/mid-treatment FDG-PET radiomics (c-index 0.71 [0.67, 0.75]) outperformed benchmark clinical imaging (c-index 0.65 [0.59, 0.71]) and FDG-PET delta radiomics (c-index 0.52 [0.48, 0.58]) models. Similarly, the IPA for multitask learning FDG-PET radiomics (30%) was higher than clinical imaging (26%) and delta radiomics (15%) models. Radiomics models performed consistently under different voxel resampling conditions. (4) Conclusion: Multitask learning radiomics for outcome modeling provides a clinical decision support platform that leverages longitudinal imaging information. This framework can reveal the relative importance of different imaging modalities and time points when designing risk-adaptive cancer treatment strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜问儿发布了新的文献求助10
刚刚
麦冬粑粑完成签到,获得积分10
刚刚
wanci应助Battery-Li采纳,获得10
刚刚
1秒前
YEM完成签到 ,获得积分10
1秒前
1秒前
赘婿应助霍鑫鑫采纳,获得10
1秒前
茄子肉末先生完成签到 ,获得积分10
2秒前
脑洞疼应助筱奇采纳,获得10
2秒前
阳佟听荷完成签到,获得积分10
2秒前
scxl2000完成签到 ,获得积分10
3秒前
行运完成签到 ,获得积分10
6秒前
xxx发布了新的文献求助10
7秒前
悦耳的子默完成签到 ,获得积分10
10秒前
Linda完成签到 ,获得积分10
12秒前
jim完成签到 ,获得积分10
12秒前
和谐板栗完成签到 ,获得积分10
13秒前
kkings关注了科研通微信公众号
14秒前
甜甜问儿发布了新的文献求助10
15秒前
怕黑钢笔完成签到 ,获得积分10
16秒前
崔小乐发布了新的文献求助20
19秒前
浮曳完成签到,获得积分10
20秒前
20秒前
21秒前
22秒前
布丁果冻完成签到,获得积分10
22秒前
迷路的秋刀鱼完成签到 ,获得积分10
22秒前
Dr_Zhan完成签到 ,获得积分10
22秒前
fff1发布了新的文献求助10
27秒前
啊啊啊啊发布了新的文献求助10
27秒前
27秒前
27秒前
NexusExplorer应助Alone采纳,获得10
31秒前
wwx完成签到,获得积分10
31秒前
31秒前
31秒前
甜甜问儿发布了新的文献求助30
32秒前
kkings发布了新的文献求助10
32秒前
33秒前
33333发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581156
求助须知:如何正确求助?哪些是违规求助? 3999138
关于积分的说明 12380772
捐赠科研通 3673660
什么是DOI,文献DOI怎么找? 2024693
邀请新用户注册赠送积分活动 1058565
科研通“疑难数据库(出版商)”最低求助积分说明 945253