已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multitask Learning Radiomics on Longitudinal Imaging to Predict Survival Outcomes following Risk-Adaptive Chemoradiation for Non-Small Cell Lung Cancer

无线电技术 医学 人工智能 肿瘤科 机器学习 放射科
作者
Parisa Forouzannezhad,Dominic Maes,Daniel S. Hippe,Phawis Thammasorn,Reza Iranzad,Jie Han,Chunyan Duan,Xiao Liu,Shouyi Wang,W. Art Chaovalitwongse,Jing Zeng,Stephen R. Bowen
出处
期刊:Cancers [MDPI AG]
卷期号:14 (5): 1228-1228
标识
DOI:10.3390/cancers14051228
摘要

(1) Background: Medical imaging provides quantitative and spatial information to evaluate treatment response in the management of patients with non-small cell lung cancer (NSCLC). High throughput extraction of radiomic features on these images can potentially phenotype tumors non-invasively and support risk stratification based on survival outcome prediction. The prognostic value of radiomics from different imaging modalities and time points prior to and during chemoradiation therapy of NSCLC, relative to conventional imaging biomarker or delta radiomics models, remains uncharacterized. We investigated the utility of multitask learning of multi-time point radiomic features, as opposed to single-task learning, for improving survival outcome prediction relative to conventional clinical imaging feature model benchmarks. (2) Methods: Survival outcomes were prospectively collected for 45 patients with unresectable NSCLC enrolled on the FLARE-RT phase II trial of risk-adaptive chemoradiation and optional consolidation PD-L1 checkpoint blockade (NCT02773238). FDG-PET, CT, and perfusion SPECT imaging pretreatment and week 3 mid-treatment was performed and 110 IBSI-compliant pyradiomics shape-/intensity-/texture-based features from the metabolic tumor volume were extracted. Outcome modeling consisted of a fused Laplacian sparse group LASSO with component-wise gradient boosting survival regression in a multitask learning framework. Testing performance under stratified 10-fold cross-validation was evaluated for multitask learning radiomics of different imaging modalities and time points. Multitask learning models were benchmarked against conventional clinical imaging and delta radiomics models and evaluated with the concordance index (c-index) and index of prediction accuracy (IPA). (3) Results: FDG-PET radiomics had higher prognostic value for overall survival in test folds (c-index 0.71 [0.67, 0.75]) than CT radiomics (c-index 0.64 [0.60, 0.71]) or perfusion SPECT radiomics (c-index 0.60 [0.57, 0.63]). Multitask learning of pre-/mid-treatment FDG-PET radiomics (c-index 0.71 [0.67, 0.75]) outperformed benchmark clinical imaging (c-index 0.65 [0.59, 0.71]) and FDG-PET delta radiomics (c-index 0.52 [0.48, 0.58]) models. Similarly, the IPA for multitask learning FDG-PET radiomics (30%) was higher than clinical imaging (26%) and delta radiomics (15%) models. Radiomics models performed consistently under different voxel resampling conditions. (4) Conclusion: Multitask learning radiomics for outcome modeling provides a clinical decision support platform that leverages longitudinal imaging information. This framework can reveal the relative importance of different imaging modalities and time points when designing risk-adaptive cancer treatment strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助雨濛濛采纳,获得10
1秒前
谷捣猫宁发布了新的文献求助10
6秒前
Yilion完成签到,获得积分10
6秒前
6秒前
111发布了新的文献求助20
8秒前
syl完成签到 ,获得积分10
12秒前
zzz发布了新的文献求助10
13秒前
15秒前
清风拂山岗完成签到,获得积分10
16秒前
明亮笑旋完成签到 ,获得积分10
17秒前
科研通AI2S应助zzz采纳,获得10
17秒前
上官若男应助zzz采纳,获得10
18秒前
22秒前
明亮笑旋关注了科研通微信公众号
23秒前
健壮的尔烟完成签到 ,获得积分10
23秒前
HEIKU应助瘦瘦的寒珊采纳,获得10
24秒前
儒雅的焦发布了新的文献求助10
27秒前
zhong发布了新的文献求助10
29秒前
zhong发布了新的文献求助10
29秒前
decade完成签到,获得积分10
29秒前
31秒前
zhong发布了新的文献求助10
33秒前
hochorsin发布了新的文献求助10
36秒前
jz完成签到,获得积分10
36秒前
42秒前
biubiuxue完成签到 ,获得积分10
43秒前
HEIKU应助瘦瘦的寒珊采纳,获得10
43秒前
小彭发布了新的文献求助10
47秒前
Xingliang_Wu98完成签到,获得积分10
47秒前
杳鸢应助科研通管家采纳,获得10
48秒前
英俊的铭应助科研通管家采纳,获得10
48秒前
NexusExplorer应助科研通管家采纳,获得10
48秒前
CodeCraft应助科研通管家采纳,获得10
49秒前
研友_VZG7GZ应助科研通管家采纳,获得10
49秒前
852应助科研通管家采纳,获得10
49秒前
49秒前
50秒前
ss25发布了新的文献求助100
51秒前
星辰大海应助Koi采纳,获得10
53秒前
54秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162121
求助须知:如何正确求助?哪些是违规求助? 2813196
关于积分的说明 7899113
捐赠科研通 2472301
什么是DOI,文献DOI怎么找? 1316428
科研通“疑难数据库(出版商)”最低求助积分说明 631305
版权声明 602142