清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multitask Learning Radiomics on Longitudinal Imaging to Predict Survival Outcomes following Risk-Adaptive Chemoradiation for Non-Small Cell Lung Cancer

无线电技术 医学 人工智能 肿瘤科 机器学习 放射科
作者
Parisa Forouzannezhad,Dominic Maes,Daniel S. Hippe,Phawis Thammasorn,Reza Iranzad,Jie Han,Chunyan Duan,Xiao Liu,Shouyi Wang,W. Art Chaovalitwongse,Jing Zeng,Stephen R. Bowen
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:14 (5): 1228-1228
标识
DOI:10.3390/cancers14051228
摘要

(1) Background: Medical imaging provides quantitative and spatial information to evaluate treatment response in the management of patients with non-small cell lung cancer (NSCLC). High throughput extraction of radiomic features on these images can potentially phenotype tumors non-invasively and support risk stratification based on survival outcome prediction. The prognostic value of radiomics from different imaging modalities and time points prior to and during chemoradiation therapy of NSCLC, relative to conventional imaging biomarker or delta radiomics models, remains uncharacterized. We investigated the utility of multitask learning of multi-time point radiomic features, as opposed to single-task learning, for improving survival outcome prediction relative to conventional clinical imaging feature model benchmarks. (2) Methods: Survival outcomes were prospectively collected for 45 patients with unresectable NSCLC enrolled on the FLARE-RT phase II trial of risk-adaptive chemoradiation and optional consolidation PD-L1 checkpoint blockade (NCT02773238). FDG-PET, CT, and perfusion SPECT imaging pretreatment and week 3 mid-treatment was performed and 110 IBSI-compliant pyradiomics shape-/intensity-/texture-based features from the metabolic tumor volume were extracted. Outcome modeling consisted of a fused Laplacian sparse group LASSO with component-wise gradient boosting survival regression in a multitask learning framework. Testing performance under stratified 10-fold cross-validation was evaluated for multitask learning radiomics of different imaging modalities and time points. Multitask learning models were benchmarked against conventional clinical imaging and delta radiomics models and evaluated with the concordance index (c-index) and index of prediction accuracy (IPA). (3) Results: FDG-PET radiomics had higher prognostic value for overall survival in test folds (c-index 0.71 [0.67, 0.75]) than CT radiomics (c-index 0.64 [0.60, 0.71]) or perfusion SPECT radiomics (c-index 0.60 [0.57, 0.63]). Multitask learning of pre-/mid-treatment FDG-PET radiomics (c-index 0.71 [0.67, 0.75]) outperformed benchmark clinical imaging (c-index 0.65 [0.59, 0.71]) and FDG-PET delta radiomics (c-index 0.52 [0.48, 0.58]) models. Similarly, the IPA for multitask learning FDG-PET radiomics (30%) was higher than clinical imaging (26%) and delta radiomics (15%) models. Radiomics models performed consistently under different voxel resampling conditions. (4) Conclusion: Multitask learning radiomics for outcome modeling provides a clinical decision support platform that leverages longitudinal imaging information. This framework can reveal the relative importance of different imaging modalities and time points when designing risk-adaptive cancer treatment strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lillianzhu1完成签到,获得积分10
6秒前
10秒前
千里草完成签到,获得积分10
11秒前
lzc发布了新的文献求助10
15秒前
lzc完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
37秒前
39秒前
77完成签到 ,获得积分10
40秒前
欢呼爆米花完成签到,获得积分10
48秒前
两袖清风完成签到 ,获得积分10
53秒前
橘子叶完成签到,获得积分20
56秒前
59秒前
在水一方应助欢呼爆米花采纳,获得10
1分钟前
1分钟前
唐泽雪穗发布了新的文献求助160
1分钟前
开心每一天完成签到 ,获得积分10
1分钟前
Shandongdaxiu完成签到 ,获得积分10
1分钟前
Lucas应助cqhecq采纳,获得10
2分钟前
2分钟前
骨科老曺完成签到 ,获得积分10
2分钟前
咕咕咕发布了新的文献求助10
2分钟前
chenll完成签到 ,获得积分10
3分钟前
咕咕咕完成签到,获得积分10
3分钟前
3分钟前
cqhecq发布了新的文献求助10
3分钟前
3分钟前
唐泽雪穗发布了新的文献求助50
3分钟前
科研通AI5应助PeterLin采纳,获得10
5分钟前
5分钟前
唐泽雪穗发布了新的文献求助180
5分钟前
5分钟前
LYY发布了新的文献求助30
5分钟前
yipmyonphu应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
两个榴莲完成签到,获得积分0
6分钟前
七凉发布了新的文献求助10
6分钟前
guoduan完成签到,获得积分10
6分钟前
ding应助Alon采纳,获得10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4965341
求助须知:如何正确求助?哪些是违规求助? 4223963
关于积分的说明 13154987
捐赠科研通 4009715
什么是DOI,文献DOI怎么找? 2194474
邀请新用户注册赠送积分活动 1208036
关于科研通互助平台的介绍 1121151