GameDKT: Deep knowledge tracing in educational games

计算机科学 追踪 任务(项目管理) 跟踪(心理语言学) 教育游戏 基线(sea) 钥匙(锁) 人工智能 领域知识 领域(数学分析) 深度学习 机器学习 国家(计算机科学) 基于游戏的学习 人机交互 多媒体 程序设计语言 数学 管理 经济 哲学 计算机安全 数学分析 地质学 海洋学 语言学
作者
Danial Hooshyar,Yueh‐Min Huang,Yeongwook Yang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:196: 116670-116670 被引量:23
标识
DOI:10.1016/j.eswa.2022.116670
摘要

Despite the multiple deep knowledge tracing (DKT) methods developed for intelligent tutoring systems and online learning environments, there exists only a few applications of such methods in educational computer games. One key challenge is that a player may deploy several interweaved and overlapped skills during gameplay, making the assessment task nontrivial. In this research, we present a generalizable DKT approach called GameDKT that integrates state-of-the-art machine learning with domain knowledge to model the learners’ knowledge state during gameplay, in an attempt to monitor and trace their proficiency level for the different skills required for educational games. Our findings reveal that GameDKT approach could successfully predict the performance of players in the coming game task using the cross-validated CNN model with accuracy and AUC of roughly 85% and 0.913, respectively, thus outperforming the MLP baseline model by up to 14%. When the performance of players is forecasted for up to four game tasks in advance, results show that the CNN model can achieve more than 70% accuracy. Interestingly, this model seems to be better and faster at identifying local patterns and it could achieve a higher performance compared to RNN and LSTM in both one-step and multi-step prediction of learners’ performance in game tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Goodenough完成签到 ,获得积分10
2秒前
2秒前
香蕉觅云应助可爱无招采纳,获得10
3秒前
王治豪发布了新的文献求助10
3秒前
Becky完成签到,获得积分10
3秒前
4秒前
夏伊完成签到,获得积分10
4秒前
5秒前
孙梦涵发布了新的文献求助10
7秒前
8秒前
8秒前
我要吃挂面完成签到,获得积分10
9秒前
李健应助坚强惜海采纳,获得10
10秒前
李健的小迷弟应助鹏程采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
12秒前
青衍应助科研通管家采纳,获得10
12秒前
pingping完成签到,获得积分10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
Devil发布了新的文献求助10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
秀丽白凝发布了新的文献求助10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
Singularity应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
Singularity应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
13秒前
初闻完成签到,获得积分10
14秒前
六六发布了新的文献求助10
15秒前
小蘑菇应助初见采纳,获得10
16秒前
17秒前
雪中完成签到 ,获得积分10
18秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138196
求助须知:如何正确求助?哪些是违规求助? 2789101
关于积分的说明 7790287
捐赠科研通 2445509
什么是DOI,文献DOI怎么找? 1300476
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046