GameDKT: Deep knowledge tracing in educational games

计算机科学 追踪 任务(项目管理) 跟踪(心理语言学) 教育游戏 基线(sea) 钥匙(锁) 人工智能 领域知识 领域(数学分析) 深度学习 机器学习 国家(计算机科学) 基于游戏的学习 人机交互 多媒体 程序设计语言 数学分析 语言学 哲学 海洋学 计算机安全 管理 数学 经济 地质学
作者
Danial Hooshyar,Yueh‐Min Huang,Yeongwook Yang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:196: 116670-116670 被引量:26
标识
DOI:10.1016/j.eswa.2022.116670
摘要

Despite the multiple deep knowledge tracing (DKT) methods developed for intelligent tutoring systems and online learning environments, there exists only a few applications of such methods in educational computer games. One key challenge is that a player may deploy several interweaved and overlapped skills during gameplay, making the assessment task nontrivial. In this research, we present a generalizable DKT approach called GameDKT that integrates state-of-the-art machine learning with domain knowledge to model the learners’ knowledge state during gameplay, in an attempt to monitor and trace their proficiency level for the different skills required for educational games. Our findings reveal that GameDKT approach could successfully predict the performance of players in the coming game task using the cross-validated CNN model with accuracy and AUC of roughly 85% and 0.913, respectively, thus outperforming the MLP baseline model by up to 14%. When the performance of players is forecasted for up to four game tasks in advance, results show that the CNN model can achieve more than 70% accuracy. Interestingly, this model seems to be better and faster at identifying local patterns and it could achieve a higher performance compared to RNN and LSTM in both one-step and multi-step prediction of learners’ performance in game tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助JF123_采纳,获得10
刚刚
1秒前
2秒前
眯眯眼的访冬完成签到 ,获得积分10
3秒前
演化的蛙鱼发布了新的文献求助100
3秒前
田様应助一米八采纳,获得10
4秒前
李爱国应助AA1Z采纳,获得10
4秒前
幼儿园老大完成签到,获得积分10
5秒前
wanci应助李梓明采纳,获得10
6秒前
正方形圆发布了新的文献求助10
8秒前
12秒前
华仔应助芮明霞采纳,获得10
12秒前
呼呼发布了新的文献求助20
12秒前
车到山前必有路女士完成签到,获得积分10
15秒前
宗友绿完成签到,获得积分10
16秒前
16秒前
20秒前
21秒前
ding应助科研通管家采纳,获得10
21秒前
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
搞怪莫茗应助科研通管家采纳,获得10
22秒前
小二郎应助科研通管家采纳,获得10
22秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
22秒前
搞怪莫茗应助科研通管家采纳,获得10
22秒前
鹏笑完成签到,获得积分10
22秒前
Singularity应助Maryamgvl采纳,获得10
22秒前
柯一一应助科研通管家采纳,获得10
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
乐观小之应助科研通管家采纳,获得10
22秒前
22秒前
1235354365434应助科研通管家采纳,获得10
22秒前
lilivite应助科研通管家采纳,获得50
22秒前
乐观小之应助科研通管家采纳,获得10
22秒前
打打应助科研通管家采纳,获得10
22秒前
大个应助科研通管家采纳,获得10
22秒前
斯文败类应助科研通管家采纳,获得30
23秒前
完美世界应助科研通管家采纳,获得10
23秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962701
求助须知:如何正确求助?哪些是违规求助? 3508707
关于积分的说明 11142251
捐赠科研通 3241458
什么是DOI,文献DOI怎么找? 1791539
邀请新用户注册赠送积分活动 872968
科研通“疑难数据库(出版商)”最低求助积分说明 803517