Spatio‐Temporal Hourly and Daily Ozone Forecasting in China Using a Hybrid Machine Learning Model: Autoencoder and Generative Adversarial Networks

自编码 空气质量指数 计算机科学 环境科学 深度学习 气象学 机器学习 数据挖掘 地理
作者
Meiling Cheng,F. Fang,I. M. Navon,Jie Zheng,Xiao Tang,Jiang Zhu,Christopher C. Pain
出处
期刊:Journal of Advances in Modeling Earth Systems [Wiley]
卷期号:14 (3) 被引量:18
标识
DOI:10.1029/2021ms002806
摘要

Abstract Efficient and accurate real‐time forecasting of national spatial ozone distribution is critical to the provision of effective early warning. Traditional numerical air quality models require a high computational cost associated with running large‐scale numerical simulations. In this work, we introduce a hybrid model (VAE‐GAN) combining a generative adversarial network (GAN) with a variational autoencoder (VAE) to learn the dynamic ozone distributions in spatial and temporal spaces. The VAE‐GAN model can not only decipher the complex nonlinear relationship between the inputs (the past states/ozone and meteorological factors) and outputs (ozone), but also provide ozone forecasts for a long lead‐time beyond the training period. The performance of VAE‐GAN is demonstrated in hourly and daily spatio‐temporal ozone forecasts over China. The training datasets from 2013 to 2017 and validation datasets from 2018 to 2019 are the collection of data from the air quality reanalysis datasets. With the use of VAE, large dataset sizes are decreased by three orders of magnitude, enabling hourly and daily forecasts to be computed in seconds. Results show that the VAE‐GAN achieves a reasonable accuracy in the prediction of both the spatial and temporal evolution patterns of hourly and daily ozone fields, as compared to the Nested Air Quality Prediction Modeling System (commonly used in China), the reanalysis data and observations during the validation period. Thus, the VAE‐GAN is a cost‐effective tool for large data‐driven predictions, which can potentially reinforce air pollution prediction efforts in providing risk assessment and management in a timely manner.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归海连碧完成签到,获得积分10
1秒前
1秒前
长白雪茫茫完成签到,获得积分20
3秒前
4秒前
ss发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
zmj应助你好采纳,获得10
5秒前
October完成签到,获得积分10
5秒前
5秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Frank应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
小猴子应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得30
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
共享精神应助科研黑洞采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
ty1996应助科研通管家采纳,获得10
8秒前
风中冰香应助科研通管家采纳,获得10
8秒前
开心鹏涛应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
Frank应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
小猴子应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
Frank应助科研通管家采纳,获得10
9秒前
Elaine应助科研通管家采纳,获得20
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532279
求助须知:如何正确求助?哪些是违规求助? 4621012
关于积分的说明 14576204
捐赠科研通 4560859
什么是DOI,文献DOI怎么找? 2498989
邀请新用户注册赠送积分活动 1478948
关于科研通互助平台的介绍 1450218