Spatio‐Temporal Hourly and Daily Ozone Forecasting in China Using a Hybrid Machine Learning Model: Autoencoder and Generative Adversarial Networks

自编码 空气质量指数 计算机科学 环境科学 深度学习 气象学 机器学习 数据挖掘 地理
作者
Meiling Cheng,F. Fang,I. M. Navon,Jie Zheng,Xiao Tang,Jiang Zhu,Christopher C. Pain
出处
期刊:Journal of Advances in Modeling Earth Systems [Wiley]
卷期号:14 (3) 被引量:18
标识
DOI:10.1029/2021ms002806
摘要

Abstract Efficient and accurate real‐time forecasting of national spatial ozone distribution is critical to the provision of effective early warning. Traditional numerical air quality models require a high computational cost associated with running large‐scale numerical simulations. In this work, we introduce a hybrid model (VAE‐GAN) combining a generative adversarial network (GAN) with a variational autoencoder (VAE) to learn the dynamic ozone distributions in spatial and temporal spaces. The VAE‐GAN model can not only decipher the complex nonlinear relationship between the inputs (the past states/ozone and meteorological factors) and outputs (ozone), but also provide ozone forecasts for a long lead‐time beyond the training period. The performance of VAE‐GAN is demonstrated in hourly and daily spatio‐temporal ozone forecasts over China. The training datasets from 2013 to 2017 and validation datasets from 2018 to 2019 are the collection of data from the air quality reanalysis datasets. With the use of VAE, large dataset sizes are decreased by three orders of magnitude, enabling hourly and daily forecasts to be computed in seconds. Results show that the VAE‐GAN achieves a reasonable accuracy in the prediction of both the spatial and temporal evolution patterns of hourly and daily ozone fields, as compared to the Nested Air Quality Prediction Modeling System (commonly used in China), the reanalysis data and observations during the validation period. Thus, the VAE‐GAN is a cost‐effective tool for large data‐driven predictions, which can potentially reinforce air pollution prediction efforts in providing risk assessment and management in a timely manner.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆丁完成签到,获得积分10
1秒前
1秒前
weii发布了新的文献求助10
1秒前
共享精神应助chaotong采纳,获得10
2秒前
今后应助hx采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
彭于晏应助Assure采纳,获得10
4秒前
朱婷完成签到,获得积分20
5秒前
禾研完成签到,获得积分10
5秒前
liquor发布了新的文献求助10
6秒前
orixero应助呆呆采纳,获得10
6秒前
科研通AI6应助zhang采纳,获得10
7秒前
棉花糖完成签到 ,获得积分20
7秒前
ZZRR完成签到,获得积分10
7秒前
雨姐科研应助WYJ采纳,获得10
8秒前
食草味完成签到,获得积分10
9秒前
完美世界应助无醇橙汁采纳,获得10
9秒前
11发布了新的文献求助10
10秒前
10秒前
10秒前
hanzhen发布了新的文献求助10
10秒前
哈基米哈吉完成签到,获得积分10
10秒前
优美猕猴桃完成签到 ,获得积分10
11秒前
风清扬发布了新的文献求助10
11秒前
搜集达人应助123123采纳,获得10
11秒前
12秒前
12秒前
12秒前
12秒前
13秒前
承乐应助旸里采纳,获得10
14秒前
liquor完成签到,获得积分10
14秒前
14秒前
mmmm完成签到,获得积分10
14秒前
李健的小迷弟应助朱婷采纳,获得10
15秒前
15秒前
鼠鼠宝宝发布了新的文献求助10
15秒前
jiangnan发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613393
求助须知:如何正确求助?哪些是违规求助? 4698608
关于积分的说明 14898233
捐赠科研通 4736102
什么是DOI,文献DOI怎么找? 2547006
邀请新用户注册赠送积分活动 1510998
关于科研通互助平台的介绍 1473546