Spatio‐Temporal Hourly and Daily Ozone Forecasting in China Using a Hybrid Machine Learning Model: Autoencoder and Generative Adversarial Networks

自编码 空气质量指数 计算机科学 环境科学 深度学习 气象学 机器学习 数据挖掘 地理
作者
Meiling Cheng,F. Fang,I. M. Navon,Jie Zheng,Xiao Tang,Jiang Zhu,Christopher C. Pain
出处
期刊:Journal of Advances in Modeling Earth Systems [Wiley]
卷期号:14 (3) 被引量:18
标识
DOI:10.1029/2021ms002806
摘要

Abstract Efficient and accurate real‐time forecasting of national spatial ozone distribution is critical to the provision of effective early warning. Traditional numerical air quality models require a high computational cost associated with running large‐scale numerical simulations. In this work, we introduce a hybrid model (VAE‐GAN) combining a generative adversarial network (GAN) with a variational autoencoder (VAE) to learn the dynamic ozone distributions in spatial and temporal spaces. The VAE‐GAN model can not only decipher the complex nonlinear relationship between the inputs (the past states/ozone and meteorological factors) and outputs (ozone), but also provide ozone forecasts for a long lead‐time beyond the training period. The performance of VAE‐GAN is demonstrated in hourly and daily spatio‐temporal ozone forecasts over China. The training datasets from 2013 to 2017 and validation datasets from 2018 to 2019 are the collection of data from the air quality reanalysis datasets. With the use of VAE, large dataset sizes are decreased by three orders of magnitude, enabling hourly and daily forecasts to be computed in seconds. Results show that the VAE‐GAN achieves a reasonable accuracy in the prediction of both the spatial and temporal evolution patterns of hourly and daily ozone fields, as compared to the Nested Air Quality Prediction Modeling System (commonly used in China), the reanalysis data and observations during the validation period. Thus, the VAE‐GAN is a cost‐effective tool for large data‐driven predictions, which can potentially reinforce air pollution prediction efforts in providing risk assessment and management in a timely manner.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lqian_Yu完成签到 ,获得积分10
刚刚
小葛发布了新的文献求助10
刚刚
Kevin发布了新的文献求助20
1秒前
lzx完成签到,获得积分10
1秒前
ZIS发布了新的文献求助10
1秒前
吴帅发布了新的文献求助10
1秒前
1秒前
1秒前
keyanrubbish发布了新的文献求助10
1秒前
tangshijun完成签到,获得积分10
2秒前
2秒前
2秒前
子车茗应助sober采纳,获得20
2秒前
2秒前
无疾而终完成签到,获得积分10
2秒前
Tdj完成签到,获得积分10
2秒前
白苹果完成签到 ,获得积分10
3秒前
天行完成签到,获得积分10
3秒前
爆米花应助666采纳,获得10
3秒前
4秒前
potatozhou完成签到,获得积分10
4秒前
4秒前
Harssi发布了新的文献求助10
4秒前
yunyii发布了新的文献求助10
4秒前
4秒前
领导范儿应助Jerrie采纳,获得10
5秒前
Aurora发布了新的文献求助10
5秒前
万能图书馆应助惠香香的采纳,获得10
5秒前
共享精神应助微笑的弧度采纳,获得10
5秒前
诚心寄灵完成签到,获得积分20
6秒前
Leon发布了新的文献求助10
6秒前
大军门诊完成签到,获得积分10
6秒前
小葛完成签到,获得积分10
6秒前
6秒前
小马甲应助优美猕猴桃采纳,获得10
6秒前
7秒前
花灯王子发布了新的文献求助10
7秒前
吴帅完成签到,获得积分10
8秒前
华仔应助Te采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836