Differences in network properties of the structural connectome in bipolar and unipolar depression

重性抑郁障碍 部分各向异性 心理学 纤维束成像 连接体 磁共振弥散成像 体素 精神科 神经科学 人工智能 医学 功能连接 心情 磁共振成像 计算机科学 放射科
作者
Jungwon Cha,Jeffrey M. Spielberg,Bo Hu,Murat Altinay,Amit Anand
出处
期刊:Psychiatry Research: Neuroimaging [Elsevier]
卷期号:321: 111442-111442 被引量:5
标识
DOI:10.1016/j.pscychresns.2022.111442
摘要

Differentiation between Bipolar Disorder Depression (BDD) and Unipolar Major Depressive Disorder (MDD) is critical to clinical practice. This study investigated machine learning classification of BDD and MDD using graph properties of Diffusion-weighted Imaging (DWI)-based structural connectome.This study included a large number of medication-free (N =229) subjects: 60 BDD, 95 MDD, and 74 Healthy Control (HC) subjects. DWI probabilistic tractography was performed to create Fractional Anisotropy (FA) and Total Streamline (TS)-based structural connectivity matrices. Global and nodal graph properties were computed from these matrices and tested for group differences. Next, using identified graph properties, machine learning classification (MLC) between BDD, MDD, MDD with risk factors for developing BD (MDD+), and MDD without risk factors for developing BD (MDD-) was conducted.Communicability Efficiency of the left superior frontal gyrus (SFG) was significantly higher in BDD vs. MDD. In particular, Communicability Efficiency using TS-based connectivity in the left SFG as well as FA-based connectivity in the right middle anterior cingulate area was higher in the BDD vs. MDD- group. There were no significant differences in graph properties between BDD and MDD+. Direct comparison between MDD+ and MDD- showed differences in Eigenvector Centrality (TS-based connectivity) of the left middle frontal sulcus. Acceptable Area Under Curve (AUC) for classification were seen between the BDD and MDD- groups, and between the MDD+ and MDD- groups, using the differing graph properties.Graph properties of DWI-based connectivity can discriminate between BDD and MDD subjects without risk factors for BD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情钵钵鸡完成签到,获得积分20
刚刚
JamesPei应助Louise采纳,获得10
刚刚
景飞丹完成签到,获得积分10
8秒前
avoidant完成签到,获得积分10
9秒前
ZZzz完成签到 ,获得积分10
10秒前
直率的听莲完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
16秒前
跳跃的语柔完成签到 ,获得积分10
16秒前
笑柳完成签到,获得积分10
17秒前
plz94完成签到 ,获得积分10
18秒前
18秒前
开朗怀蝶完成签到,获得积分10
24秒前
Louise发布了新的文献求助10
24秒前
77完成签到 ,获得积分10
24秒前
25秒前
gwbk完成签到,获得积分10
26秒前
流星雨完成签到 ,获得积分10
29秒前
闪闪的斑马完成签到,获得积分10
29秒前
川川完成签到 ,获得积分10
30秒前
kk完成签到 ,获得积分10
30秒前
田様应助jasonwee采纳,获得10
30秒前
量子星尘发布了新的文献求助10
30秒前
orixero应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
香蕉觅云应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
31秒前
31秒前
池池应助科研通管家采纳,获得10
31秒前
科研太蓝了完成签到 ,获得积分10
33秒前
一只橙子完成签到,获得积分10
34秒前
今后应助zzz采纳,获得10
35秒前
112233完成签到,获得积分10
36秒前
害怕的冰颜完成签到 ,获得积分10
37秒前
琳琳完成签到,获得积分10
38秒前
ncuwzq完成签到,获得积分10
40秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789443
求助须知:如何正确求助?哪些是违规求助? 5719696
关于积分的说明 15474617
捐赠科研通 4917278
什么是DOI,文献DOI怎么找? 2646883
邀请新用户注册赠送积分活动 1594516
关于科研通互助平台的介绍 1549052