化学
中子衍射
离子
快离子导体
离子电导率
离子键合
电解质
扩散
电导率
化学物理
锂(药物)
晶体结构
结晶学
物理化学
热力学
电极
内分泌学
物理
有机化学
医学
作者
Katharina Hogrefe,Nicolò Minafra,Isabel Hanghofer,Ananya Banik,Wolfgang G. Zeier,Martin Wilkening
摘要
Solid electrolytes are at the heart of future energy storage systems. Li-bearing argyrodites are frontrunners in terms of Li+ ion conductivity. Although many studies have investigated the effect of elemental substitution on ionic conductivity, we still do not fully understand the various origins leading to improved ion dynamics. Here, Li6+xP1-xGexS5I served as an application-oriented model system to study the effect of cation substitution (P5+ vs Ge4+) on Li+ ion dynamics. While Li6PS5I is a rather poor ionic conductor (10-6 S cm-1, 298 K), the Ge-containing samples show specific conductivities on the order of 10-2 S cm-1 (330 K). Replacing P5+ with Ge4+ not only causes S2-/I- anion site disorder but also reveals via neutron diffraction that the Li+ ions do occupy several originally empty sites between the Li rich cages in the argyrodite framework. Here, we used 7Li and 31P NMR to show that this Li+ site disorder has a tremendous effect on both local ion dynamics and long-range Li+ transport. For the Ge-rich samples, NMR revealed several new Li+ exchange processes, which are to be characterized by rather low activation barriers (0.1-0.3 eV). Consequently, in samples with high Ge-contents, the Li+ ions have access to an interconnected network of pathways allowing for rapid exchange processes between the Li cages. By (i) relating the changes of the crystal structure and (ii) measuring the dynamic features as a function of length scale, we were able to rationalize the microscopic origins of fast, long-range ion transport in this class of electrolytes.
科研通智能强力驱动
Strongly Powered by AbleSci AI