亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recent Advances in First-Principles Based Molecular Dynamics

计算机科学 分子动力学 量子 Boosting(机器学习) 皮秒 统计物理学 计算科学 物理 人工智能 量子力学 激光器
作者
François Mouvet,Justin Villard,Viacheslav Bolnykh,Ursula Rothlisberger
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (3): 221-230 被引量:14
标识
DOI:10.1021/acs.accounts.1c00503
摘要

First-principles molecular dynamics (FPMD) and its quantum mechanical-molecular mechanical (QM/MM) extensions are powerful tools to follow the real-time dynamics of a broad variety of systems in their ground as well as electronically excited states. The continued advances in computational power have enabled simulations of QM regions of larger sizes for more extended time scales. In addition, development of the parallel algorithms has boosted the performance of QM/MM methods even on existing computer architectures. In the case of density functional-based FPMD, systems of several hundreds to thousands of atoms can now be customarily simulated for tens to hundreds of picoseconds. In spite of this progress, the time scale limitations remain severe, especially when high-rung exchange-correlation functionals or high-level wave function based quantum mechanical methods are used. To ameliorate this, a large number of enhanced sampling methods have been introduced but most of the approaches that have been developed to increase the efficiency of FPMD based simulations sacrifice the real-time dynamics in favor of enhancing sampling. Here, we present some recent advances in boosting the efficiency of FPMD based simulations while keeping the full dynamic information. These include a highly efficient recent implementation of FPMD-based QM/MM simulations that not only enables fully flexible combinations of different electronic structure methods and force fields via a highly efficient communication library, it also fully exploits parallelism for both quantum and classical descriptions. The second type of acceleration methods we discuss is a large family of specially devised multiple-time-step algorithms that make use of suitable breakups of the total nuclear forces into fast components that can be calculated via lower level methods and slowly varying correction forces evaluated with a high-level method at long time intervals. The computational gain of this scheme mostly depends on the cost difference between the two methods and advantageous combinations can yield large speedups without compromising the accuracy of the high-level method. And finally, the third class of FPMD acceleration methods presented here are machine learning models to accelerated FPMD and their powerful combinations with multiple-time-step techniques. The combination of all the approaches enables substantial speedups of FPMD simulations of several orders of magnitude while fully preserving the real-time dynamics and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
leapper发布了新的文献求助10
18秒前
gentleman完成签到,获得积分10
28秒前
无花果应助科研通管家采纳,获得30
38秒前
40秒前
量子星尘发布了新的文献求助50
45秒前
Daniel发布了新的文献求助10
53秒前
完美世界应助沉醉的中国钵采纳,获得100
1分钟前
1分钟前
SciGPT应助城。采纳,获得10
2分钟前
粱青寒完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
城。发布了新的文献求助10
2分钟前
2分钟前
shi发布了新的文献求助10
2分钟前
乐乐应助shi采纳,获得10
2分钟前
2分钟前
2分钟前
wanci应助城。采纳,获得10
2分钟前
3分钟前
3分钟前
wanli发布了新的文献求助10
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
wanli完成签到,获得积分10
3分钟前
搜集达人应助周而复始@采纳,获得10
3分钟前
4分钟前
学生信的大叔完成签到,获得积分10
4分钟前
周而复始@发布了新的文献求助10
4分钟前
daiyu发布了新的文献求助10
4分钟前
情怀应助周而复始@采纳,获得10
4分钟前
daiyu完成签到,获得积分20
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
周而复始@完成签到,获得积分10
4分钟前
4分钟前
5分钟前
宋艳芳完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889315
求助须知:如何正确求助?哪些是违规求助? 4173414
关于积分的说明 12952008
捐赠科研通 3934811
什么是DOI,文献DOI怎么找? 2159027
邀请新用户注册赠送积分活动 1177325
关于科研通互助平台的介绍 1082170