Recent Advances in First-Principles Based Molecular Dynamics

计算机科学 分子动力学 量子 Boosting(机器学习) 皮秒 统计物理学 计算科学 物理 人工智能 量子力学 激光器
作者
François Mouvet,Justin Villard,Viacheslav Bolnykh,Ursula Rothlisberger
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (3): 221-230 被引量:14
标识
DOI:10.1021/acs.accounts.1c00503
摘要

First-principles molecular dynamics (FPMD) and its quantum mechanical-molecular mechanical (QM/MM) extensions are powerful tools to follow the real-time dynamics of a broad variety of systems in their ground as well as electronically excited states. The continued advances in computational power have enabled simulations of QM regions of larger sizes for more extended time scales. In addition, development of the parallel algorithms has boosted the performance of QM/MM methods even on existing computer architectures. In the case of density functional-based FPMD, systems of several hundreds to thousands of atoms can now be customarily simulated for tens to hundreds of picoseconds. In spite of this progress, the time scale limitations remain severe, especially when high-rung exchange-correlation functionals or high-level wave function based quantum mechanical methods are used. To ameliorate this, a large number of enhanced sampling methods have been introduced but most of the approaches that have been developed to increase the efficiency of FPMD based simulations sacrifice the real-time dynamics in favor of enhancing sampling. Here, we present some recent advances in boosting the efficiency of FPMD based simulations while keeping the full dynamic information. These include a highly efficient recent implementation of FPMD-based QM/MM simulations that not only enables fully flexible combinations of different electronic structure methods and force fields via a highly efficient communication library, it also fully exploits parallelism for both quantum and classical descriptions. The second type of acceleration methods we discuss is a large family of specially devised multiple-time-step algorithms that make use of suitable breakups of the total nuclear forces into fast components that can be calculated via lower level methods and slowly varying correction forces evaluated with a high-level method at long time intervals. The computational gain of this scheme mostly depends on the cost difference between the two methods and advantageous combinations can yield large speedups without compromising the accuracy of the high-level method. And finally, the third class of FPMD acceleration methods presented here are machine learning models to accelerated FPMD and their powerful combinations with multiple-time-step techniques. The combination of all the approaches enables substantial speedups of FPMD simulations of several orders of magnitude while fully preserving the real-time dynamics and accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Darlene发布了新的文献求助10
刚刚
1秒前
传奇3应助曹佳凝采纳,获得10
1秒前
纯真芙发布了新的文献求助10
1秒前
hahaagain发布了新的文献求助10
1秒前
clock完成签到 ,获得积分10
1秒前
guozizi发布了新的文献求助10
2秒前
VVzza发布了新的文献求助10
2秒前
3秒前
3秒前
HoldenX发布了新的文献求助10
3秒前
3秒前
medmh完成签到,获得积分10
3秒前
gyh完成签到,获得积分10
3秒前
3秒前
4秒前
夏天呀完成签到,获得积分10
4秒前
无花果应助謓言采纳,获得10
4秒前
无奈忆安发布了新的文献求助10
5秒前
大模型应助wsq采纳,获得10
5秒前
领导范儿应助刘德新采纳,获得10
5秒前
light123完成签到,获得积分10
5秒前
852应助GD采纳,获得10
5秒前
偶然发现的西柚完成签到 ,获得积分10
6秒前
6秒前
今天完成签到,获得积分10
6秒前
FashionBoy应助唠叨的剑通采纳,获得10
6秒前
7秒前
充电宝应助mumu采纳,获得10
7秒前
CC完成签到,获得积分20
7秒前
8秒前
8秒前
小麦完成签到,获得积分10
9秒前
文静煜城完成签到 ,获得积分10
10秒前
bhhyyy完成签到,获得积分10
10秒前
10秒前
方文杰完成签到,获得积分10
10秒前
10秒前
我是老大应助usu采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612993
求助须知:如何正确求助?哪些是违规求助? 4698217
关于积分的说明 14896593
捐赠科研通 4734695
什么是DOI,文献DOI怎么找? 2546766
邀请新用户注册赠送积分活动 1510830
关于科研通互助平台的介绍 1473494