Recent Advances in First-Principles Based Molecular Dynamics

计算机科学 分子动力学 量子 Boosting(机器学习) 皮秒 统计物理学 计算科学 物理 人工智能 量子力学 激光器
作者
François Mouvet,Justin Villard,Viacheslav Bolnykh,Ursula Rothlisberger
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (3): 221-230 被引量:14
标识
DOI:10.1021/acs.accounts.1c00503
摘要

First-principles molecular dynamics (FPMD) and its quantum mechanical-molecular mechanical (QM/MM) extensions are powerful tools to follow the real-time dynamics of a broad variety of systems in their ground as well as electronically excited states. The continued advances in computational power have enabled simulations of QM regions of larger sizes for more extended time scales. In addition, development of the parallel algorithms has boosted the performance of QM/MM methods even on existing computer architectures. In the case of density functional-based FPMD, systems of several hundreds to thousands of atoms can now be customarily simulated for tens to hundreds of picoseconds. In spite of this progress, the time scale limitations remain severe, especially when high-rung exchange-correlation functionals or high-level wave function based quantum mechanical methods are used. To ameliorate this, a large number of enhanced sampling methods have been introduced but most of the approaches that have been developed to increase the efficiency of FPMD based simulations sacrifice the real-time dynamics in favor of enhancing sampling. Here, we present some recent advances in boosting the efficiency of FPMD based simulations while keeping the full dynamic information. These include a highly efficient recent implementation of FPMD-based QM/MM simulations that not only enables fully flexible combinations of different electronic structure methods and force fields via a highly efficient communication library, it also fully exploits parallelism for both quantum and classical descriptions. The second type of acceleration methods we discuss is a large family of specially devised multiple-time-step algorithms that make use of suitable breakups of the total nuclear forces into fast components that can be calculated via lower level methods and slowly varying correction forces evaluated with a high-level method at long time intervals. The computational gain of this scheme mostly depends on the cost difference between the two methods and advantageous combinations can yield large speedups without compromising the accuracy of the high-level method. And finally, the third class of FPMD acceleration methods presented here are machine learning models to accelerated FPMD and their powerful combinations with multiple-time-step techniques. The combination of all the approaches enables substantial speedups of FPMD simulations of several orders of magnitude while fully preserving the real-time dynamics and accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵念婉完成签到,获得积分10
刚刚
空城完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
guozizi发布了新的文献求助150
1秒前
Meyako完成签到 ,获得积分0
2秒前
前行的灿发布了新的文献求助20
2秒前
递年完成签到,获得积分10
3秒前
3秒前
欣慰的笑阳完成签到 ,获得积分10
4秒前
暮烟完成签到,获得积分10
4秒前
迷了路的猫完成签到,获得积分10
4秒前
白色的风车完成签到,获得积分10
5秒前
5秒前
万里完成签到,获得积分10
5秒前
5秒前
fang完成签到,获得积分10
6秒前
6秒前
hhh完成签到,获得积分10
7秒前
,。完成签到,获得积分10
7秒前
达雨发布了新的文献求助10
7秒前
领导范儿应助格林采纳,获得10
7秒前
Titi完成签到 ,获得积分10
7秒前
前行的灿发布了新的文献求助10
7秒前
Oil完成签到,获得积分10
7秒前
Leo完成签到,获得积分0
9秒前
平常星星完成签到 ,获得积分10
9秒前
现代宝宝完成签到,获得积分10
10秒前
苗条的紫文完成签到,获得积分10
10秒前
境随心转完成签到,获得积分10
10秒前
结实的洋葱完成签到,获得积分10
11秒前
斯文败类应助gzmejiji采纳,获得10
11秒前
共享精神应助猪头小队长采纳,获得10
12秒前
香蕉觅云应助drughunter009采纳,获得10
12秒前
刘晓丹完成签到,获得积分10
12秒前
Shark完成签到,获得积分10
12秒前
飞想思完成签到,获得积分10
12秒前
夏定海完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568403
求助须知:如何正确求助?哪些是违规求助? 4652961
关于积分的说明 14702698
捐赠科研通 4594773
什么是DOI,文献DOI怎么找? 2521254
邀请新用户注册赠送积分活动 1492932
关于科研通互助平台的介绍 1463735