Recent Advances in First-Principles Based Molecular Dynamics

计算机科学 分子动力学 量子 Boosting(机器学习) 皮秒 统计物理学 计算科学 物理 人工智能 量子力学 激光器
作者
François Mouvet,Justin Villard,Viacheslav Bolnykh,Ursula Rothlisberger
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (3): 221-230 被引量:14
标识
DOI:10.1021/acs.accounts.1c00503
摘要

First-principles molecular dynamics (FPMD) and its quantum mechanical-molecular mechanical (QM/MM) extensions are powerful tools to follow the real-time dynamics of a broad variety of systems in their ground as well as electronically excited states. The continued advances in computational power have enabled simulations of QM regions of larger sizes for more extended time scales. In addition, development of the parallel algorithms has boosted the performance of QM/MM methods even on existing computer architectures. In the case of density functional-based FPMD, systems of several hundreds to thousands of atoms can now be customarily simulated for tens to hundreds of picoseconds. In spite of this progress, the time scale limitations remain severe, especially when high-rung exchange-correlation functionals or high-level wave function based quantum mechanical methods are used. To ameliorate this, a large number of enhanced sampling methods have been introduced but most of the approaches that have been developed to increase the efficiency of FPMD based simulations sacrifice the real-time dynamics in favor of enhancing sampling. Here, we present some recent advances in boosting the efficiency of FPMD based simulations while keeping the full dynamic information. These include a highly efficient recent implementation of FPMD-based QM/MM simulations that not only enables fully flexible combinations of different electronic structure methods and force fields via a highly efficient communication library, it also fully exploits parallelism for both quantum and classical descriptions. The second type of acceleration methods we discuss is a large family of specially devised multiple-time-step algorithms that make use of suitable breakups of the total nuclear forces into fast components that can be calculated via lower level methods and slowly varying correction forces evaluated with a high-level method at long time intervals. The computational gain of this scheme mostly depends on the cost difference between the two methods and advantageous combinations can yield large speedups without compromising the accuracy of the high-level method. And finally, the third class of FPMD acceleration methods presented here are machine learning models to accelerated FPMD and their powerful combinations with multiple-time-step techniques. The combination of all the approaches enables substantial speedups of FPMD simulations of several orders of magnitude while fully preserving the real-time dynamics and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包容丹云完成签到,获得积分10
1秒前
1秒前
可爱小蝴蝶完成签到,获得积分20
1秒前
1秒前
1秒前
NI完成签到,获得积分10
2秒前
夏侯觅风发布了新的文献求助10
2秒前
迷路幻柏完成签到,获得积分10
2秒前
3秒前
3秒前
皮卡乒皮卡乓完成签到,获得积分10
3秒前
3秒前
4秒前
不配.应助zhoujiahui采纳,获得10
4秒前
someone完成签到,获得积分10
4秒前
华仔应助枝桠采纳,获得10
4秒前
大个应助天啦噜采纳,获得10
4秒前
5秒前
陈军应助科研通管家采纳,获得20
5秒前
陈军应助科研通管家采纳,获得20
6秒前
陈军应助科研通管家采纳,获得20
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
陈军应助科研通管家采纳,获得20
6秒前
思源应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
医院骑士发布了新的文献求助10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
花开发布了新的文献求助10
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
陈军应助科研通管家采纳,获得20
7秒前
7秒前
7秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135273
求助须知:如何正确求助?哪些是违规求助? 2786262
关于积分的说明 7776475
捐赠科研通 2442202
什么是DOI,文献DOI怎么找? 1298495
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847