Recent Advances in First-Principles Based Molecular Dynamics

计算机科学 分子动力学 量子 Boosting(机器学习) 皮秒 统计物理学 计算科学 物理 人工智能 量子力学 激光器
作者
François Mouvet,Justin Villard,Viacheslav Bolnykh,Ursula Rothlisberger
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (3): 221-230 被引量:14
标识
DOI:10.1021/acs.accounts.1c00503
摘要

First-principles molecular dynamics (FPMD) and its quantum mechanical-molecular mechanical (QM/MM) extensions are powerful tools to follow the real-time dynamics of a broad variety of systems in their ground as well as electronically excited states. The continued advances in computational power have enabled simulations of QM regions of larger sizes for more extended time scales. In addition, development of the parallel algorithms has boosted the performance of QM/MM methods even on existing computer architectures. In the case of density functional-based FPMD, systems of several hundreds to thousands of atoms can now be customarily simulated for tens to hundreds of picoseconds. In spite of this progress, the time scale limitations remain severe, especially when high-rung exchange-correlation functionals or high-level wave function based quantum mechanical methods are used. To ameliorate this, a large number of enhanced sampling methods have been introduced but most of the approaches that have been developed to increase the efficiency of FPMD based simulations sacrifice the real-time dynamics in favor of enhancing sampling. Here, we present some recent advances in boosting the efficiency of FPMD based simulations while keeping the full dynamic information. These include a highly efficient recent implementation of FPMD-based QM/MM simulations that not only enables fully flexible combinations of different electronic structure methods and force fields via a highly efficient communication library, it also fully exploits parallelism for both quantum and classical descriptions. The second type of acceleration methods we discuss is a large family of specially devised multiple-time-step algorithms that make use of suitable breakups of the total nuclear forces into fast components that can be calculated via lower level methods and slowly varying correction forces evaluated with a high-level method at long time intervals. The computational gain of this scheme mostly depends on the cost difference between the two methods and advantageous combinations can yield large speedups without compromising the accuracy of the high-level method. And finally, the third class of FPMD acceleration methods presented here are machine learning models to accelerated FPMD and their powerful combinations with multiple-time-step techniques. The combination of all the approaches enables substantial speedups of FPMD simulations of several orders of magnitude while fully preserving the real-time dynamics and accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贵月发布了新的文献求助10
刚刚
刚刚
zyh发布了新的文献求助10
刚刚
Dream发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
灵波完成签到,获得积分10
1秒前
2秒前
2秒前
su发布了新的文献求助10
2秒前
Ava应助abc采纳,获得10
3秒前
3秒前
hulahula发布了新的文献求助10
3秒前
Canace发布了新的文献求助10
3秒前
云飏发布了新的文献求助10
3秒前
杨晓明发布了新的文献求助10
4秒前
科研通AI6应助chunyeliangchuan采纳,获得30
4秒前
感动绮晴完成签到,获得积分10
5秒前
5秒前
冷艳寒梦发布了新的文献求助10
6秒前
大个应助高兴星月采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
丘山发布了新的文献求助10
6秒前
领导范儿应助Pendulium采纳,获得10
6秒前
刘小姐发布了新的文献求助10
7秒前
7秒前
生动曼冬发布了新的文献求助10
7秒前
Orange应助111采纳,获得10
7秒前
james发布了新的文献求助50
7秒前
浮游应助lizhuang采纳,获得10
7秒前
8秒前
hh发布了新的文献求助10
8秒前
坚强的曼雁完成签到,获得积分10
8秒前
专注的胡萝卜完成签到 ,获得积分10
8秒前
8秒前
FashionBoy应助卡皮巴拉采纳,获得10
8秒前
领导范儿应助liberty采纳,获得10
8秒前
丘比特应助bjjtdx1997采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576558
求助须知:如何正确求助?哪些是违规求助? 4661927
关于积分的说明 14738788
捐赠科研通 4602503
什么是DOI,文献DOI怎么找? 2525869
邀请新用户注册赠送积分活动 1495750
关于科研通互助平台的介绍 1465414