亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel approach to pore pressure modeling based on conventional well logs using convolutional neural network

岩石物理学 地质学 石油工程 钻探 压缩性 测井 人工神经网络 钻井液 岩土工程 计算机科学 工程类 多孔性 人工智能 机械工程 航空航天工程
作者
Morteza Matinkia,Ali Amraeiniya,Mohammad Mohammadi Behboud,Mohammad Mehrad,Mahdi Bajolvand,Mohammad Hossein Gandomgoun,Mehdi Gandomgoun
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier BV]
卷期号:211: 110156-110156 被引量:29
标识
DOI:10.1016/j.petrol.2022.110156
摘要

Accurate prediction of pore pressure (PP) is among the most critical concerns to the design of drilling operation because of the remarkable role of this parameter in preventing particular drilling problems such as wellbore instability, drilling pipe stuck, mud loss, kicks, and even blow outs. Given the limitations of PP measurement through in-hole well tests, a number of analytic and intelligent techniques have been developed to estimate the PP from conventionally available petrophysical logs at offset wells. In this contribution, analytic equations are combined with intelligent algorithms (IAs) in an integrated workflow for estimating the PP. For this purpose, we collected the required data from two wells (herein referred to as Wells A and B) penetrating a carbonate reservoir in two fields in southwestern Iran. The collected data included full-set petrophysical log data at a total of 2850 points as well as 15 measured PPs using the RFT tool. In order to model and validate the results, the data from Well A was used to train the model, with the Well-B data used for validation. Once finished with data collection, a noise attenuation stage was implemented through median filtering. Subsequently, PP estimation was practiced using a couple of popular analytic models, namely modified Eaton's, Bowers', and compressibility models, with the results compared to the measured PPs. Next, a feature selection phase was conducted where depth (Depth), gamma ray log (CGR), density log (RHOB), resistivity log (RT), pore compressibility (Cp), and slowness log (DT) were selected as the most effective parameters for estimating the PP out of the 8 parameters studied at Well A. Feature selection was performed using the second version of nondominated-sorting genetic algorithm (NSGA-II) combined with multilayer perceptron (MLP) neural network (NN). Next, deep learning techniques, simple form of the least square support vector machine (LSSVM) and its hybrid forms with particle swarm optimization (PSO), cuckoo optimization algorithm (COA), and genetic algorithm (GA), and multilayer extreme learning machine (MELM) hybridized with the PSO, COA, and GA were used to estimate the PP based on the data at Well A, with the results then validated using the data at Well B. Results of the training and testing phases showed that, among the 9 models considered in this research, the best results were produced by the CNN model followed by MELM-COA, and LSSVM-COA, corresponding to root-mean-square errors (RMSEs) of 0.1072, 0.1175, and 0.1237 and determination coefficients (R2) of 0.9884, 0.9860, and 0.9844, respectively, indicating the higher accuracy and generalizability of these models compared to other investigated models. Evaluation of these models on the validation data from Well B further remarked the superiority of the CNN model, as per an RMSE and R2 of 0.1066 and 0.9806, respectively. Indeed, the better performance of the CNN model than the other models in both the training and validation phases reflects the high generalizability of this model in the range of the studied data. In general, the good performance of the intelligent models in similar formation along two wells – where the analytic models rather failed to exhibit consistently good performance – proves the superiority of the IAs over conventional analytic models. This methodology is strongly recommended provided more diverse data is available at in larger amounts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
hzc发布了新的文献求助10
23秒前
hzc发布了新的文献求助10
51秒前
1分钟前
英姑应助hzc采纳,获得10
1分钟前
achulw发布了新的文献求助10
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
1分钟前
hzc发布了新的文献求助10
1分钟前
1分钟前
郑雅柔完成签到 ,获得积分0
2分钟前
情怀应助achulw采纳,获得10
2分钟前
2分钟前
2分钟前
orixero应助李芬芬采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
achulw发布了新的文献求助10
2分钟前
achulw发布了新的文献求助10
3分钟前
3分钟前
present发布了新的文献求助10
3分钟前
打打应助present采纳,获得10
4分钟前
4分钟前
mingjiang发布了新的文献求助10
4分钟前
研友_nEWRJ8完成签到,获得积分10
4分钟前
5分钟前
MCCCCC_6发布了新的文献求助10
5分钟前
JamesPei应助球球子采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
6分钟前
achulw完成签到,获得积分10
6分钟前
科研通AI5应助achulw采纳,获得10
6分钟前
李爱国应助MCCCCC_6采纳,获得10
6分钟前
完美世界应助hzc采纳,获得10
6分钟前
6分钟前
hzc发布了新的文献求助10
6分钟前
我是老大应助iamleopeng采纳,获得10
6分钟前
7分钟前
7分钟前
achulw发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5031600
求助须知:如何正确求助?哪些是违规求助? 4266153
关于积分的说明 13298651
捐赠科研通 4075523
什么是DOI,文献DOI怎么找? 2229094
邀请新用户注册赠送积分活动 1237642
关于科研通互助平台的介绍 1162590