正电子发射断层摄影术
癌症
癌变
癌症治疗
功能(生物学)
生物能学
癌细胞
分子成像
计算生物学
癌症研究
肿瘤微环境
生物信息学
生物
医学
作者
Naresh Damuka,Meghana Dodda,Kiran Kumar Solingapuram Sai
出处
期刊:Methods in molecular biology
日期:2022-01-01
卷期号:: 23-35
标识
DOI:10.1007/978-1-0716-1896-7_4
摘要
Tumorigenesis is a multistep process marked by variations in numerous metabolic pathways that affect cellular architectures and functions. Cancer cells reprogram their energy metabolism to enable several basic molecular functions, including membrane biosynthesis, receptor regulations, bioenergetics, and redox stress. In recent years, cancer diagnosis and treatment strategies have targeted these specific metabolic changes and the tumor's interactions with its microenvironment. Positron emission tomography (PET) captures all molecular alterations leading to abnormal function and cancer progression. As a result, the development of PET radiotracers increasingly focuses on irregular biological pathways or cells that overexpress receptors that have the potential to function as biomarkers for early diagnosis and treatment measurements as well as research. This chapter reviews both established and evolving PET radiotracers used to image tumor biology. We have also included a few advantages and disadvantages of the routinely used PET radiotracers in cancer imaging.
科研通智能强力驱动
Strongly Powered by AbleSci AI