Artificial Intelligence for Segmentation of Bladder Tumor Cystoscopic Images Performed by U-Net with Dilated Convolution

医学 分割 像素 基本事实 人工智能 再现性 核医学 放射科 膀胱癌 计算机科学 癌症 内科学 数学 统计
作者
Jun Mutaguchi,Ken’ichi Morooka,Satoshi Kobayashi,Aiko Umehara,S. Miyauchi,Fumio Kinoshita,Junichi Inokuchi,Yoshinao Oda,Ryo Kurazume,Masatoshi Eto
出处
期刊:Journal of Endourology [Mary Ann Liebert, Inc.]
卷期号:36 (6): 827-834 被引量:16
标识
DOI:10.1089/end.2021.0483
摘要

Background: Early intravesical recurrence after transurethral resection of bladder tumors (TURBT) is often caused by overlooking of tumors during TURBT. Although narrow-band imaging and photodynamic diagnosis were developed to detect more tumors than conventional white-light imaging, the accuracy of these systems has been subjective, along with poor reproducibility due to their dependence on the physician's experience and skills. To create an objective and reproducible diagnosing system, we aimed at assessing the utility of artificial intelligence (AI) with Dilated U-Net to reduce the risk of overlooked bladder tumors when compared with the conventional AI system, termed U-Net. Materials and Methods: We retrospectively obtained cystoscopic images by converting videos obtained from 120 patients who underwent TURBT into 1790 cystoscopic images. The Dilated U-Net, which is an extension of the conventional U-Net, analyzed these image datasets. The diagnostic accuracy of the Dilated U-Net and conventional U-Net were compared by using the following four measurements: pixel-wise sensitivity (PWSe); pixel-wise specificity (PWSp); pixel-wise positive predictive value (PWPPV), representing the AI diagnostic accuracy per pixel; and dice similarity coefficient (DSC), representing the overlap area between the bladder tumors in the ground truth images and segmentation maps. Results: The cystoscopic images were divided as follows, according to the pathological T-stage: 944, Ta; 412, T1; 329, T2; and 116, carcinoma in situ. The PWSe, PWSp, PWPPV, and DSC of the Dilated U-Net were 84.9%, 88.5%, 86.7%, and 83.0%, respectively, which had improved when compared to that with the conventional U-Net by 1.7%, 1.3%, 2.1%, and 2.3%, respectively. The DSC values were high for elevated lesions and low for flat lesions for both Dilated and conventional U-Net. Conclusions: Dilated U-Net, with higher DSC values than conventional U-Net, might reduce the risk of overlooking bladder tumors during cystoscopy and TURBT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感动的飞鸟完成签到,获得积分10
刚刚
1秒前
1秒前
铁柱完成签到,获得积分10
1秒前
TIGun完成签到,获得积分10
1秒前
王佳怡完成签到 ,获得积分10
1秒前
2秒前
3秒前
3秒前
温柔高丽发布了新的文献求助10
3秒前
3秒前
Orange应助学术八戒1025采纳,获得10
4秒前
阮楷瑞发布了新的文献求助10
4秒前
4秒前
铁柱发布了新的文献求助10
4秒前
知无涯者发布了新的文献求助10
5秒前
6秒前
6秒前
persist发布了新的文献求助10
7秒前
7秒前
surfer363发布了新的文献求助10
9秒前
xixi发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
ZZ发布了新的文献求助10
10秒前
10秒前
苍蝇搓手完成签到,获得积分10
11秒前
znn发布了新的文献求助10
11秒前
大罗完成签到,获得积分10
11秒前
11秒前
初雪平寒完成签到,获得积分10
12秒前
13秒前
情怀应助平淡冬亦采纳,获得10
13秒前
哈哈哈完成签到 ,获得积分20
13秒前
14秒前
木子完成签到 ,获得积分10
15秒前
chengzhenfa发布了新的文献求助10
15秒前
DennisLiberta完成签到,获得积分10
15秒前
阮楷瑞发布了新的文献求助10
16秒前
镜花水月发布了新的文献求助20
17秒前
小宝完成签到,获得积分10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974463
求助须知:如何正确求助?哪些是违规求助? 3518823
关于积分的说明 11196212
捐赠科研通 3255008
什么是DOI,文献DOI怎么找? 1797655
邀请新用户注册赠送积分活动 877052
科研通“疑难数据库(出版商)”最低求助积分说明 806130