Artificial Intelligence for Segmentation of Bladder Tumor Cystoscopic Images Performed by U-Net with Dilated Convolution

医学 分割 像素 基本事实 人工智能 再现性 核医学 放射科 膀胱癌 计算机科学 癌症 内科学 数学 统计
作者
Jun Mutaguchi,Ken’ichi Morooka,Satoshi Kobayashi,Aiko Umehara,S. Miyauchi,Fumio Kinoshita,Junichi Inokuchi,Yoshinao Oda,Ryo Kurazume,Masatoshi Eto
出处
期刊:Journal of Endourology [Mary Ann Liebert]
卷期号:36 (6): 827-834 被引量:14
标识
DOI:10.1089/end.2021.0483
摘要

Background: Early intravesical recurrence after transurethral resection of bladder tumors (TURBT) is often caused by overlooking of tumors during TURBT. Although narrow-band imaging and photodynamic diagnosis were developed to detect more tumors than conventional white-light imaging, the accuracy of these systems has been subjective, along with poor reproducibility due to their dependence on the physician's experience and skills. To create an objective and reproducible diagnosing system, we aimed at assessing the utility of artificial intelligence (AI) with Dilated U-Net to reduce the risk of overlooked bladder tumors when compared with the conventional AI system, termed U-Net. Materials and Methods: We retrospectively obtained cystoscopic images by converting videos obtained from 120 patients who underwent TURBT into 1790 cystoscopic images. The Dilated U-Net, which is an extension of the conventional U-Net, analyzed these image datasets. The diagnostic accuracy of the Dilated U-Net and conventional U-Net were compared by using the following four measurements: pixel-wise sensitivity (PWSe); pixel-wise specificity (PWSp); pixel-wise positive predictive value (PWPPV), representing the AI diagnostic accuracy per pixel; and dice similarity coefficient (DSC), representing the overlap area between the bladder tumors in the ground truth images and segmentation maps. Results: The cystoscopic images were divided as follows, according to the pathological T-stage: 944, Ta; 412, T1; 329, T2; and 116, carcinoma in situ. The PWSe, PWSp, PWPPV, and DSC of the Dilated U-Net were 84.9%, 88.5%, 86.7%, and 83.0%, respectively, which had improved when compared to that with the conventional U-Net by 1.7%, 1.3%, 2.1%, and 2.3%, respectively. The DSC values were high for elevated lesions and low for flat lesions for both Dilated and conventional U-Net. Conclusions: Dilated U-Net, with higher DSC values than conventional U-Net, might reduce the risk of overlooking bladder tumors during cystoscopy and TURBT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
矢迹给矢迹的求助进行了留言
刚刚
我看看发布了新的文献求助10
2秒前
zjh发布了新的文献求助10
2秒前
热情的豁发布了新的文献求助10
3秒前
3秒前
3秒前
漫天繁星发布了新的文献求助10
3秒前
3秒前
5秒前
嗷呜ww完成签到,获得积分20
5秒前
Cherrita关注了科研通微信公众号
6秒前
小周同学完成签到,获得积分10
6秒前
serenity711完成签到 ,获得积分10
6秒前
在水一方应助飘逸的青雪采纳,获得10
6秒前
沈家宁发布了新的文献求助10
7秒前
zxy完成签到 ,获得积分10
7秒前
MonsterZhang完成签到,获得积分20
7秒前
XXX完成签到,获得积分10
8秒前
amazing39发布了新的文献求助10
8秒前
8秒前
木心完成签到,获得积分10
8秒前
8秒前
封印完成签到,获得积分10
9秒前
嗷呜ww发布了新的文献求助10
9秒前
lucky发布了新的文献求助200
9秒前
10秒前
10秒前
燕燕完成签到 ,获得积分10
11秒前
11秒前
渡劫发布了新的文献求助20
12秒前
12秒前
坚强代柔发布了新的文献求助10
12秒前
粗心的含莲完成签到,获得积分10
13秒前
13秒前
HOHO完成签到,获得积分10
13秒前
13秒前
可爱的鬼神完成签到,获得积分10
14秒前
liu发布了新的文献求助10
14秒前
两院候选人应助陌路孤星采纳,获得10
15秒前
Summeryz920发布了新的文献求助10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308081
求助须知:如何正确求助?哪些是违规求助? 2941598
关于积分的说明 8504517
捐赠科研通 2616249
什么是DOI,文献DOI怎么找? 1429510
科研通“疑难数据库(出版商)”最低求助积分说明 663787
邀请新用户注册赠送积分活动 648720