亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

3D convolutional neural network model from contrast-enhanced CT to predict spread through air spaces in non-small cell lung cancer

医学 接收机工作特性 队列 逻辑回归 肺癌 卷积神经网络 人工智能 无线电技术 人工神经网络 成像生物标志物 放射科 肿瘤科 内科学 磁共振成像 计算机科学
作者
Junli Tao,Changyu Liang,Ke Yin,Jiayang Fang,Bohui Chen,Zhenyu Wang,Xiaosong Lan,Jiuquan Zhang
出处
期刊:Diagnostic and interventional imaging [Elsevier]
卷期号:103 (11): 535-544 被引量:14
标识
DOI:10.1016/j.diii.2022.06.002
摘要

The purpose of this study was to compare the efficacy of five non-invasive models, including three-dimensional (3D) convolutional neural network (CNN) model, to predict the spread through air spaces (STAS) status of non-small cell lung cancer (NSCLC), and to obtain the best prediction model to provide a basis for clinical surgery planning. A total of 203 patients (112 men, 91 women; mean age, 60 years; age range 22–80 years) with NSCLC were retrospectively included. Of these, 153 were used for training cohort and 50 for validation cohort. According to the image biomarker standardization initiative reference manual, the image processing and feature extraction were standardized using PyRadiomics. The logistic regression classifier was used to build the model. Five models (clinicopathological/CT model, conventional radiomics model, computer vision (CV) model, 3D CNN model and combined model) were constructed to predict STAS by NSCLC. Area under the receiver operating characteristic curves (AUC) were used to validate the capability of the five models to predict STAS. For predicting STAS, the 3D CNN model was superior to the clinicopathological/CT model, conventional radiomics model, CV model and combined model and achieved satisfactory discrimination performance, with an AUC of 0.93 (95% CI: 0.70–0.82) in the training cohort and 0.80 (95% CI: 0.65–0.86) in the validation cohort. Decision curve analysis indicated that, when the probability of the threshold was over 10%, the 3D CNN model was beneficial for predicting STAS status compared to either treating all or treating none of the patients within certain ranges of risk threshold The 3D CNN model can be used for the preoperative prediction of STAS in patients with NSCLC, and was superior to the other four models in predicting patients' risk of developing STAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
开开发布了新的文献求助10
15秒前
28秒前
31秒前
32秒前
大力的无声完成签到 ,获得积分10
33秒前
情怀应助云缙采纳,获得10
34秒前
smash发布了新的文献求助10
35秒前
twk发布了新的文献求助10
36秒前
twk完成签到,获得积分10
43秒前
breeze完成签到,获得积分10
49秒前
柚木完成签到 ,获得积分10
51秒前
1分钟前
希望天下0贩的0应助开开采纳,获得10
1分钟前
1分钟前
1分钟前
zz完成签到,获得积分20
1分钟前
1分钟前
zz发布了新的文献求助10
1分钟前
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
早晚完成签到 ,获得积分10
1分钟前
1分钟前
番茄市长完成签到,获得积分10
1分钟前
2分钟前
周冬华完成签到,获得积分10
2分钟前
一口南瓜饼完成签到 ,获得积分10
2分钟前
莱芙完成签到 ,获得积分10
2分钟前
jerry完成签到,获得积分10
2分钟前
2分钟前
3分钟前
笨笨怜烟给笨笨怜烟的求助进行了留言
3分钟前
Velpro完成签到,获得积分20
3分钟前
Velpro发布了新的文献求助10
3分钟前
搜集达人应助smash采纳,获得10
3分钟前
3分钟前
3分钟前
zyp发布了新的文献求助10
3分钟前
3分钟前
smash发布了新的文献求助10
3分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413341
求助须知:如何正确求助?哪些是违规求助? 3015651
关于积分的说明 8871603
捐赠科研通 2703387
什么是DOI,文献DOI怎么找? 1482232
科研通“疑难数据库(出版商)”最低求助积分说明 685159
邀请新用户注册赠送积分活动 679944