Regulating anionic redox activity of lithium-rich layered oxides via LiNbO3 integrated modification

材料科学 氧化还原 尖晶石 掺杂剂 兴奋剂 电解质 锂(药物) 无机化学 化学物理 物理化学 化学 电极 光电子学 医学 内分泌学 冶金
作者
Chao Shen,Yiqian Liu,Libin Hu,Wenrong Li,Xiaoyu Liu,Yaru Shi,Yong Jiang,Bing Zhao,Jiujun Zhang
出处
期刊:Nano Energy [Elsevier]
卷期号:101: 107555-107555 被引量:40
标识
DOI:10.1016/j.nanoen.2022.107555
摘要

Lithium-rich layered oxide cathodes suffer from severe interfacial degradation, capacity attenuation and voltage fading which mainly result from poor reversibility of anionic redox. In this study, a LiNbO3 integrated strategy including LiNbO3 coating, spinel heterostructure and Nb5+ doping has been proposed for stabilizing lattice oxygen and improving structural stability. Among them, the LiNbO3 coating layer can protect highly active peroxo-like oxygen from the electrolyte and spinel heterostructure with three-dimensional (3D) lithium transport channels facilitates the diffusion kinetics. More importantly, Nb5+ dopants inserting into subsurface lattice regulate localized electron configuration and strengthen the reversibility of anionic redox. Theoretical calculation results including density of states and crystal orbital overlap populations unravel the active O-O dimer still coordinates with crystal framework under fully delithiated state after Nb doping exhibiting enhanced anionic redox reversibility and structural stability. Corresponding analysis suggest that doping Nb5+ cations possessing no valence electron (4d0) and low electronegativity could transform Mn-O system into electrochemical inactive Nb-O system with large charge transfer and low d orbital repulsion (Mott-Hubbard regime). Moreover, this inactive Nb-O system cannot provide any reactive electron from Nb5+ cation and oxygen holes have to be isolated on O 2p orbitals, leading to the enhanced reversibility of anionic redox. This integrated modification strategy provides inspiring insights for understanding and regulating the reversibility of anionic redox, showing great potential in designing high-performance lithium-rich Mn-based cathodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
同福完成签到,获得积分20
1秒前
1秒前
满意爆米花完成签到 ,获得积分10
1秒前
旋转门完成签到,获得积分20
3秒前
同福发布了新的文献求助10
4秒前
apple发布了新的文献求助30
4秒前
李健应助枫叶采纳,获得10
4秒前
lucylee完成签到,获得积分10
4秒前
彩色宛筠完成签到,获得积分10
8秒前
yinyin完成签到 ,获得积分10
10秒前
10秒前
玉米完成签到,获得积分10
11秒前
斯文败类应助爱德华兹俊采纳,获得10
11秒前
上官若男应助云_123采纳,获得10
11秒前
欢呼的凡梦完成签到,获得积分10
13秒前
13秒前
乐乐应助siwei采纳,获得10
14秒前
香蕉觅云应助李新悦采纳,获得50
15秒前
15秒前
15秒前
乐园发布了新的文献求助200
16秒前
专注的飞瑶完成签到 ,获得积分10
16秒前
木雨亦潇潇完成签到,获得积分10
18秒前
Ava应助菜菜Cc采纳,获得10
18秒前
mzy发布了新的文献求助10
18秒前
19秒前
小龙完成签到,获得积分10
19秒前
bkagyin应助电催化托采纳,获得10
19秒前
Saven完成签到,获得积分10
19秒前
枫叶发布了新的文献求助10
20秒前
21秒前
小章完成签到,获得积分10
21秒前
hxx完成签到,获得积分10
22秒前
云_123发布了新的文献求助10
23秒前
siwei发布了新的文献求助10
25秒前
冷静的哈密瓜完成签到,获得积分10
26秒前
酷波er应助科研通管家采纳,获得10
31秒前
华仔应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
丘比特应助科研通管家采纳,获得10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785830
关于积分的说明 7774354
捐赠科研通 2441699
什么是DOI,文献DOI怎么找? 1298104
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825