Active Flow Control of Helicopter Rotor Based on Coflow Jet

转子(电动) 空气动力学 机械 阻力 流动分离 推力 反应程度 控制理论(社会学) 湍流 流量控制(数据) 航空航天工程 直升机旋翼 Lift(数据挖掘) 工程类 物理 机械工程 计算机科学 电信 控制(管理) 人工智能 数据挖掘
作者
Liu Jiaqi,Rongqian Chen,Qiaochu Song,Yancheng You,Zheyu Shi
出处
期刊:International Journal of Aerospace Engineering [Hindawi Limited]
卷期号:2022: 1-19 被引量:1
标识
DOI:10.1155/2022/9299470
摘要

When a helicopter rotor undergoes flow separation, the drag of the rotor increases substantially, as does the power demand, which seriously affects the aerodynamic performance and flight safety of the helicopter. Therefore, it is crucial to research how to suppress the flow separation of rotor blades. An active control technique based on a coflow jet (CFJ) at the rotor blade tip was employed in this study to suppress the flow separation over the rotor. The mechanisms and behavior were investigated. The rotor flow field was numerically simulated by solving the Reynolds-averaged Navier–Stokes equations with the finite volume method. The turbulence model was k ω SST, and the rotor motion was simulated using the overset mesh technique. After applying CFJ control, the airflow from the injection slot at the leading edge of the rotor increased the energy of the mainstream in the near-wall area, which enhanced its ability to resist the adverse pressure gradient. A flow separation was effectively suppressed, both on the advancing and retreating sides, which improved the aerodynamic performance of the rotor. During the whole rotation period, the thrust coefficient of the rotor increased by up to 5.6%, the moment coefficient decreased by as much as 26.8%, and the equivalent lift-to-drag ratio increased by up to 44.0%. Moreover, the effects of the CFJ parameters on the flow separation suppression of the rotor are researched. These results may provide a foundation for the development of aerodynamic performance improvement for helicopter rotor based on a CFJ.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助orange采纳,获得10
刚刚
Yu完成签到,获得积分10
刚刚
221发布了新的文献求助10
1秒前
znn发布了新的文献求助10
1秒前
1秒前
maq完成签到,获得积分10
1秒前
刚国忠发布了新的文献求助10
1秒前
zzz完成签到,获得积分10
2秒前
霸气的忆丹完成签到,获得积分10
2秒前
韩麒嘉发布了新的文献求助10
2秒前
2秒前
2秒前
bingyv发布了新的文献求助10
3秒前
3秒前
反之完成签到,获得积分10
3秒前
小圆不圆完成签到,获得积分10
4秒前
ding5完成签到,获得积分10
4秒前
4秒前
4秒前
软语完成签到,获得积分10
4秒前
chuzai完成签到,获得积分10
5秒前
小二郎应助zhanng采纳,获得10
5秒前
5秒前
刘厚麟发布了新的文献求助20
6秒前
6秒前
Lucas应助一个小鸡腿采纳,获得10
6秒前
6秒前
英俊的铭应助AI_S采纳,获得10
6秒前
7秒前
7秒前
小俊发布了新的文献求助10
7秒前
bc应助Angel采纳,获得30
7秒前
杨好圆完成签到,获得积分10
7秒前
Xie完成签到,获得积分10
7秒前
Stone发布了新的文献求助10
7秒前
原野小年发布了新的文献求助10
8秒前
一十六发布了新的文献求助10
8秒前
大白牛完成签到,获得积分10
10秒前
叮当喵发布了新的文献求助10
10秒前
lewis17发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836